|
目录部分:
; J- S0 ~5 R' L. O% K; xContents7 A1 M% S3 P/ R2 b0 N
page xiii
! g' A) W( W0 E JPreface xv
& k2 Z( A# r4 o1 Introduction and Overview 1' G8 n) S- v, y" d& ^
1.1 A classi¯cation of thin ¯lm con¯gurations 33 T) \' h: F9 r3 L' m4 W% v
1.2 Film deposition methods 6$ M. q& D4 d$ j r& o: w0 N8 t
1.2.1 Physical vapor deposition 7
( k; F1 Y" S+ W$ u7 D1.2.2 Chemical vapor deposition 10
$ o/ }: S5 o) ~, i5 S, s w1.2.3 Thermal spray deposition 12' Q2 J8 Q* ?; k
1.2.4 Example: Thermal barrier coatings 14
9 e7 V3 i9 ?0 u# P5 {& p1.3 Modes of ¯lm growth by vapor deposition 17: Z) ~8 H7 r; Y; v" m, N
1.3.1 From vapor to adatoms 172 x- Y( n( B/ R5 H
1.3.2 From adatoms to ¯lm growth 19
% P4 a j# }/ T/ ?0 @3 s7 i1.3.3 Energy density of a free surface or an interface 22. X; T7 ^4 E& ~4 @0 q
1.3.4 Surface stress 27% L! l# e4 _7 y4 _% c$ W# I
1.3.5 Growth modes based on surface energies 30
% Y% r4 u) M/ a# i" X* b1.4 Film microstructures 335 r2 t9 g+ m( t
1.4.1 Epitaxial ¯lms 34& s% Q2 t3 a9 y' ?7 H) H
1.4.2 Example: Vertical-cavity surface-emitting lasers 43
5 `3 B+ k1 b' \; p) |# U R9 D1.4.3 Polycrystalline ¯lms 44/ \' W' F0 q4 G5 L2 {
1.4.4 Example: Films for magnetic storage media 50
. c( n" g9 u @& ?7 j1.5 Processing of microelectronic structures 52) z% ^3 I. Y( J+ x( Q
1.5.1 Lithography 532 R2 p" l; `: E. e
1.5.2 The damascene process for copper interconnects 54
1 k- f- |7 }- p1.6 Processing of MEMS structures 57
8 m& }5 Z! W8 s# k% J- k/ M1.6.1 Bulk micromachining 574 ~' N# u+ |9 l2 x
1.6.2 Surface micromachining 598 s$ f2 k2 d4 f6 L7 w( I
1.6.3 Molding processes 60
: Y. c0 F* _- U; v$ `iv7 J" N B4 `7 T2 ?& p' R$ R
Contents v
. |# d+ U2 z& x& ?( ?' z3 ~1.6.4 NEMS structures 62
( w7 x3 Y- z W N. `1.6.5 Example: Vibrating beam bacterium detector 64
4 B" v! \. U6 L- N7 r% p8 W+ |1.7 Origins of ¯lm stress 65+ j; q- i x" G1 _1 t
1.7.1 Classi¯cation of ¯lm stress 66
+ Y U" V. U1 t6 s0 Y1.7.2 Stress in epitaxial ¯lms 689 K- j" k4 @% C9 A9 b; x
1.8 Growth stress in polycrystalline ¯lms 69- i* l; B, G* U) Q, J1 {
1.8.1 Compressive stress prior to island coalescence 71
# y' b3 d3 k# j1.8.2 Example: In°uence of areal coverage 74
1 N/ b) S- {0 _8 B7 [% I/ g$ L1.8.3 Tensile stress due to island contiguity 75
/ l: Z4 W, S9 ^& E3 e& i: M2 [1.8.4 Compressive stress during continued growth 77
& w- q# O6 o$ ?' S! X1.8.5 Correlations between ¯nal stress and grain structure 78
, S* K9 c# E$ l5 v& q: Z* v1.8.6 Other mechanisms of stress evolution 808 _; X! v) v2 I
1.9 Consequences of stress in ¯lms 90
; m: Z2 l X7 ?4 ~! R! t/ d1.10 Exercises 91 z4 \4 P3 B' K" T+ N5 u; r0 j0 e
2 Film stress and substrate curvature 93( w* {3 e- }" \4 A
2.1 The Stoney formula 94+ H9 [$ v e; u& N
2.1.1 Example: Curvature due to epitaxial strain 99
+ f5 B/ E% y: M; B% u- s2.1.2 Example: Curvature due to thermal strain 100
1 ?4 A& P& h' g* ~' T+ ^3 `) m2.2 In°uence of ¯lm thickness on bilayer curvature 101
5 V- q y! ]9 g2.2.1 Substrate curvature for arbitrary ¯lm thickness 103
! x( a) w) m8 B1 ^& G- C+ {2.2.2 Example: Maximum thermal stress in a bilayer 110: _; p( {0 |0 B" k" e9 T
2.2.3 Historical note on thermostatic bimetals 1115 }% v' n- L5 m# t3 J1 g' u. E6 Z$ j
2.3 Methods for curvature measurement 113
) q" D0 F$ M: E6 E2.3.1 Scanning laser method 1158 q# w0 [2 j1 Y! c* M! G! L3 Y
2.3.2 Multi-beam optical stress sensor 116
/ r7 D1 u$ v j& ?2.3.3 Grid re°ection method 118
' ^$ |& w2 e1 }" O Z2.3.4 Coherent gradient sensor method 120
/ _5 b( }9 [1 T3 e& W& }) _" s2.4 Layered and compositionally graded ¯lms 124
+ g5 v& x- {4 {" ^, [/ f3 A2 D2.4.1 Nonuniform mismatch strain and elastic properties 126
' e( n3 j7 t {. g2 A+ l2.4.2 Constant gradient in mismatch strain 130: e; n& C f+ i7 p# e4 v9 H
2.4.3 Example: Stress in compositionally graded ¯lms 131) O4 D5 @' l9 l% }+ N" I& J
2.4.4 Periodic multilayer ¯lm 133* a, V, V& M9 ^) i: F( @8 g
2.4.5 Example: Overall thermoelastic response of a multilayer 134
6 N$ N: N/ G8 x/ l5 ^' O2 \2.4.6 Multilayer ¯lm with small total thickness 1361 z d' u! } j
2.4.7 Example: Stress in a thin multilayer ¯lm 137
) n9 G, N( h9 ]. j+ f2.5 Geometrically nonlinear deformation range 138/ J3 d8 v6 R& ^; O
2.5.1 Limit to the linear range 139
; }! A! H5 t6 L; t5 m( w4 J3 Q2.5.2 Axially symmetric deformation in the nonlinear range 141
* k; i9 v4 L# b; c* r( v2.6 Bifurcation in equilibrium shape 143 J+ ^8 r7 T) T+ F9 E2 d
vi Contents
; c& q/ q- S- Q" G) {2.6.1 Bifurcation analysis with uniform curvature 146
( X2 ^: y5 @- @2 u+ X2.6.2 Visualization of states of uniform curvature 154
' R- X: ^) F2 ]# T# K3 x8 p3 ~+ }2.6.3 Bifurcation for general curvature variation 158
/ Y4 F5 x" n a3 Q2.6.4 A substrate curvature deformation map 162$ S4 S+ s/ D( S% t: L
2.6.5 Example: A curvature map for a Cu/Si system 163
- j9 k" ]! o: L9 F" m9 ?& v2.7 Exercises 164
* ]3 C9 A+ e$ c n3 |3 Stress in anisotropic and patterned films 167/ E, }. K; S8 K$ s: C; u' o6 H+ t
3.1 Elastic anisotropy 168
2 t( x0 {( u7 d6 y2 {7 J3.2 Elastic constants of cubic crystals 170
# w6 u/ X0 p( P: \; W2 N3.2.1 Directional variation of e®ective modulus 172
" t: A: m7 F, W: I! n) ?( C3.2.2 Isotropy as a special case 1747 e- T% r. ^1 o8 m/ O
3.3 Elastic constants of non-cubic crystals 1758 \6 l4 m4 Q* ]& z) F0 e
3.4 Elastic strain in layered epitaxial materials 176
2 C' F9 p! {9 B7 u. Q" t0 H! ^3.5 Film stress for a general mismatch strain 180
7 o+ k F' K6 \! ?; v3.5.1 Arbitrary orientation of the ¯lm material 181
) Q8 d* ~2 ]& L' V( w/ D3.5.2 Example: Cubic thin ¯lm with a (111) orientation 184
% ?+ L& a7 }/ U( a3.6 Film stress from x-ray di®raction measurement 186
9 P8 x# T' X' n0 E3.6.1 Relationship between stress and d¡spacing 186
5 F# O; Y' J9 f ^0 N0 v4 I! n/ y* _% ]3.6.2 Example: Stress implied by measured d¡spacing 188
8 B( I7 ~% J/ i3.6.3 Stress-free d¡spacing from asymmetric di®raction 189
- C* B" Q; R% k6 G3.6.4 Example: Determination of reference lattice spacing 1944 V# i$ @+ N+ v! p0 p" E
3.7 Substrate curvature due to anisotropic ¯lms 195, j8 O; S, J# V6 T& c- K; X' o; s9 h
3.7.1 Anisotropic thin ¯lm on an isotropic substrate 195# \* `+ y' Q. v4 R+ F: j0 Y" t! m8 {1 @
3.7.2 Aligned orthotropic materials 198
6 C7 l5 J0 \, Q% ?/ }. {3.8 Piezoelectric thin ¯lm 201* O0 Y( r# x+ N, K6 U+ u
3.8.1 Mismatch strain due to an electric ¯eld 202( L# R; x! Q2 w0 g6 |" Y4 {7 B. x& j
3.8.2 Example: Substrate curvature due to an electric ¯eld 203
$ ^ E/ }# s; I. `3.9 Periodic array of parallel ¯lm cracks 204
5 W7 A t: \. p3 d: i3 H2 T3.9.1 Plane strain curvature change due to ¯lm cracks 206; M/ F5 a% B+ h/ A2 Y5 e
3.9.2 Biaxial curvature due to ¯lm cracks 213' A4 V5 V; U, t/ V
3.10 Periodic array of parallel lines or stripes 218
1 a: L; G; s% p) d3.10.1 Biaxial curvature due to lines 218
' X, d7 W& k0 t1 ]- @3.10.2 Volume averaged stress in terms of curvature 224
" Z, Y- i$ \7 e0 G& K3.10.3 Volume averaged stress in a damascene structure 227
. d) U( A) s% O2 p- j3.11 Measurement of stress in patterned thin ¯lms 2315 w" p* { d3 p4 b7 H) s% U ~
3.11.1 The substrate curvature method 231
$ a, E$ Y. }' B0 w8 E6 a( q3.11.2 The x-ray di®raction method 232' s" J' J; J) F' W0 W
3.11.3 Micro-Raman spectroscopy 232
4 ?8 ?* Z- b: ]8 Q3.12 Exercises 2341 z5 l) n8 `! b4 I. I
Contents vii- h& ?2 r7 o. I7 R2 Z3 `( u
4 Delamination and fracture 239
* R/ e; l0 \& L" B4.1 Stress concentration near a ¯lm edge 241: x0 i, v) q0 K
4.1.1 A membrane ¯lm 243( K3 u. c# I1 }% e$ b; d
4.1.2 Example: An equation governing interfacial shear stress 245% _7 H& k% ]. q! ]
4.1.3 More general descriptions of edge stress 247; z4 |" a. P- C; E
4.2 Fracture mechanics concepts 252
2 ]1 H+ z! Y K9 g4.2.1 Energy release rate and the Gri±th criterion 254. l$ R- U% D- @. b Z
4.2.2 Example: Interface toughness of a laminated composite 2593 V5 C! L% `& ^2 c
4.2.3 Crack edge stress ¯elds 261
, ~8 J) p- g8 {) k' d8 z4.2.4 Phase angle of the local stress state 264
C: h* R, Z1 z1 t2 N6 L1 r( H" s4.2.5 Driving force for interface delamination 265% Y% P, ?$ X& L K
4.3 Work of fracture 268! ]9 O$ c8 }& Z8 I) ~& k9 ~) f
4.3.1 Characterization of interface separation behavior 269$ h; M. C/ H& e# R( x w
4.3.2 E®ects of processing and interface chemistry 272
4 k* J$ ^' T0 o | Q g) B* ]" ?4.3.3 E®ect of local phase angle on fracture energy 276* h7 u( u8 P* |7 `1 z* k0 ?" N+ ^
4.3.4 Example: Fracture resistance of nacre 278
# r4 m* |) d1 n/ b6 w! t) u4.4 Film delamination due to residual stress 2827 z$ u8 J2 J- M2 o! i3 y
4.4.1 A straight delamination front 285
! N9 ]9 L7 K7 S: l2 C4.4.2 Example: Delamination due to thermal strain 287! i! `, a* M9 X9 ~% e$ f" u4 B
4.4.3 An expanding circular delamination front 288& j5 {0 M8 B E6 Q* L- n
4.4.4 Phase angle of the stress concentration ¯eld 2938 D: k+ }. |- \: G* i" N+ E" I7 \
4.4.5 Delamination approaching a ¯lm edge 2944 ?. b2 f/ s3 }
4.5 Methods for interface toughness measurement 297
) F- W1 w4 s% C9 y2 ~) S, q7 e4.5.1 Double cantilever test con¯guration 2980 t `2 K( B, n8 K4 ^/ B
4.5.2 Four-point °exure beam test con¯guration 2994 \. O( N9 t! s; B% g, i
4.5.3 Compression test specimen con¯gurations 303
8 _4 G" [8 @# q4.5.4 The superlayer test con¯guration 306' M k% Y8 D- G& l
4.6 Film cracking due to residual stress 309
c* }# I& q: ^4.6.1 A surface crack in a ¯lm 309
* ]# g5 J" C% T2 e' n4.6.2 A tunnel crack in a buried layer 317+ f4 d/ e2 s; u
4.6.3 An array of cracks 319
" f* D! A4 B* n# _" U/ I4.6.4 Example: Cracking of an epitaxial ¯lm 324% }, x( @) Y; E o6 C
4.7 Crack de°ection at an interface 325
, H- v1 `" v* V/ P8 E4 X& t4.7.1 Crack de°ection out of an interface 326* h$ P! o2 r3 M* @; _5 \9 j
4.7.2 Crack de°ection into an interface 330
) X! s) ?2 ]% A2 H# c7 k4.8 Exercises 3380 h2 }( {: d. P
5 Film buckling, bulging and peeling 341
& ^' J, t; {8 O5 h! ]5 ]7 Q# [5.1 Buckling of a strip of uniform width 342
& E% p" @- C6 M6 n5.1.1 Post-buckling response 343( y6 W7 J0 `; l/ R; A
viii Contents
% P) Q. ]) f# N& @& |5.1.2 Driving force for growth of delamination 349
, A% e( d- ?( D6 E) V8 s5.1.3 Phase angle of local stress state at interface 350( h* T7 z4 y0 Z6 ^
5.1.4 Limitations for elastic-plastic materials 356
3 V+ P7 u5 s# z; B X4 p7 ?) t# j3 X0 l$ q5.2 Buckling of a circular patch 358/ I3 K: G( X9 L
5.2.1 Post-buckling response 358
. [* a6 j2 e- p6 I5.2.2 Example: Temperature change for buckling of a debond 363
# e9 ^5 V! M. e9 }5.2.3 Driving force for delamination 364
( _5 X1 a% v" |/ r5 ~: l5.2.4 Example: Buckling of an oxide ¯lm 369
1 n1 Y% G5 L* s( Q0 p7 n F' {2 X5.3 Secondary buckling 370
# _( u+ \2 y! M6 \5.4 Experimental observations 372
; ~0 R- X; e; c% J$ K1 i! F5.4.1 Edge delamination 372
5 Y3 S" ] ~& H5 R' E& G( i5.4.2 Initially circular delamination 373
( t* ^+ O+ P2 O% H! f5.4.3 E®ects of imperfections on buckling delamination 377
y( @* d4 j5 C! P6 `! y: w2 J5.4.4 Example: Buckling instability of carbon ¯lms 380* _ i) [. e4 f% M
5.5 Film buckling without delamination 382
0 u, C) l6 R; K- I8 X' W, i; }0 p5.5.1 Soft elastic substrate 3836 B: b' j; G5 Z( V; g
5.5.2 Viscous substrate 385
* ]+ S" y0 \6 @- }6 u5.5.3 Example: Buckling wavelength for a glass substrate 387
4 D( z: A* E5 `% L* j j5.6 Pressurized bulge of uniform width 388
- Q3 X# ^% G# p5 F5.6.1 Small de°ection bending response 388
5 M- \7 p8 ^6 ]1 v1 k8 ~# B; `5.6.2 Large de°ection response 390
) \9 D9 v$ `4 L5.6.3 Membrane response 393
* v$ X. a- A, ]0 V! ?) C, b8 q5.6.4 Mechanics of delamination 396, B9 e+ Q; i O# U' [& ~
5.7 Circular pressurized bulge 400( ?* \7 R, M" x% L
5.7.1 Small de°ection bending response 4012 Q% |3 \ g8 E0 w7 e+ R( M. T8 Q
5.7.2 Membrane response 401
) k& I) w" T% n$ R* r) [, Y3 b$ q% {5.7.3 Large de°ection response 404
. h& S ]" ^+ U* h% A5.7.4 The in°uence of residual stress 408
- j* A/ [: @" _( ~. U# p# z5.7.5 Delamination mechanics 409' g! l) ?' W/ v( F
5.7.6 Bulge test con¯gurations 412
8 h6 k" ?( `# p/ v7 Z- Z9 w, h: e5.8 Example: MEMS capacitive transducer 414
/ c- m5 s' p+ H. s5.9 Film peeling 418
2 J/ j) X. ?& L5.9.1 The driving force for delamination 418% ~0 Q+ t$ y& Y
5.9.2 Mechanics of delamination 4190 k! ]- w5 d6 t
5.10 Exercises 420! G# i w! Y u/ X
6 Dislocation formation in epitaxial systems 422
" I* B" y3 ^, {& v# |6.1 Dislocation mechanics concepts 4238 e& u- X: n' d5 A2 \
6.1.1 Dislocation equilibrium and stability 423
% {7 |: [7 g0 B( r, V7 }5 j6.1.2 Elastic ¯eld of a dislocation near a free surface 426
, ~3 j4 E/ _$ ?+ m; jContents ix
% } U: ^5 p0 p& I1 C6.2 Critical thickness of a strained epitaxial ¯lm 432
7 U. _" E s; [# B6 D' i2 b/ B6.2.1 The critical thickness criterion 433. o! t+ x3 }7 O% e5 }1 x
6.2.2 Dependence of critical thickness on mismatch strain 436
& [' f: j P" s; N: n8 C, }3 G5 t6.2.3 Example: Critical thickness of a SiGe ¯lm on Si(001) 438, p& P8 |! l7 T' C' u( q0 H8 B
6.2.4 Experimental results for critical thickness 439
0 o3 R4 ]! r0 \% c1 N: b. ]6.2.5 Example: In°uence of crystallographic orientation on hcr 441
' o- F6 v! }9 R k5 s6.3 The isolated threading dislocation 443# C* y7 Q D* S1 f8 k
6.3.1 Condition for advance of a threading dislocation 444
6 y& k/ \7 s7 M. W. _6.3.2 Limitations of the critical thickness condition 448' }2 g/ f& Y6 Y3 ~, I/ Z; F" S) W2 M) P
6.3.3 Threading dislocation under nonequilibrium conditions 451
0 E' ~. O3 ~3 b- _- |9 w" N6.4 Layered and graded ¯lms 4552 Y8 e( b F w# L5 p
6.4.1 Uniform strained layer capped by an unstrained layer 4566 r9 M( f: R" z( }9 w7 g
6.4.2 Strained layer superlattice 460
4 n$ {: v. l1 `6.4.3 Compositionally graded ¯lm 4624 Z, N* S5 r! m6 L+ o" C
6.5 Model system based on the screw dislocation 463( V! S% ~4 i# @, A# R
6.5.1 Critical thickness condition for the model system 464: x v3 ^. S$ j; G
6.5.2 The in°uence of ¯lm{substrate modulus di®erence 4659 Q- O- v, g; E( ^
6.5.3 Example: Modulus di®erence and dislocation formation 469
; M6 Q* A9 Z3 x6.6 Non-planar epitaxial systems 470! y) ]; P; O- w! m
6.6.1 A buried strained quantum wire 472
2 d3 N6 n+ l; e M! E% L# q# U6.6.2 E®ect of a free surface on quantum wire stability 477
$ v6 X( E+ m: B( T; V0 G6.7 The in°uence of substrate compliance 482
- P$ |* G" ^ w0 V$ t) I' Q/ t6.7.1 A critical thickness estimate 483
$ z% ]# x r+ G# h4 P% X6.7.2 Example: Critical thickness for a compliant substrate 486
% W, U" K$ P2 w2 ?7 X6.7.3 Mis¯t strain relaxation due to a viscous underlayer 4873 H' A; [& G: ~& c$ l
6.7.4 Force on a dislocation in a layer 490
# Y& _7 J& |8 D( P) P6.8 Dislocation nucleation 493; @' o; @7 r& G6 J, E
6.8.1 Spontaneous formation of a surface dislocation loop 495
T' i& `' I; i6.8.2 Dislocation nucleation in a perfect crystal 4970 M. \: \, a/ [( t8 G
6.8.3 E®ect of a stress concentrator on nucleation 501
" A* G' M1 v' ^+ z) H8 S6.9 Exercises 5048 t) m& R, O" j+ {# {8 K
7 Dislocation interactions and strain relaxation 5062 i# S' e# M: R5 u J9 S
7.1 Interaction of parallel mis¯t dislocations 507
; K9 D: P2 q0 ?2 e7.1.1 Spacing based on mean strain 508 `$ C) ~/ `. v# ~. Y( V+ x
7.1.2 Spacing for simultaneous formation of dislocations 509( V% o) \. M! N+ D( {5 ^: g
7.1.3 Spacing based on insertion of the last dislocation 511
7 z6 C# h, f6 Y. X/ M7.2 Interaction of intersecting mis¯t dislocations 513
1 \5 B m) s' C! w! Z7.2.1 Blocking of a threading dislocation 515+ D( L7 K" y( F$ v1 R# Q: e
7.2.2 Intersecting arrays of mis¯t dislocations 520, u# X! J; l" r7 \, Q: X t( N
x Contents1 ^1 |8 S2 g& t/ r8 N# ?
7.3 Strain relaxation due to dislocation formation 523 |
|