找回密码
 注册
查看: 2173|回复: 7

薄膜资料(Thin film Material)连续送第一部分!

[复制链接]
发表于 2006-3-11 00:14:32 | 显示全部楼层 |阅读模式
目录部分:
" W& a& u' @+ UContents& n6 p6 t; h$ M" X
page xiii
  T4 [8 Q/ O, e- DPreface xv
  C3 A+ Y' A3 \9 l1 Introduction and Overview 15 m5 b, l% r8 v. n1 q8 {5 x
1.1 A classi¯cation of thin ¯lm con¯gurations 33 H; R' m! R' i
1.2 Film deposition methods 62 z" a& d* p- _  k; O1 l, [
1.2.1 Physical vapor deposition 7
, d8 D2 W& j5 U6 l6 A& n$ F1.2.2 Chemical vapor deposition 10, Q# I2 T* t2 ?: D
1.2.3 Thermal spray deposition 12
( ]. S$ z: A7 c( |# [  _, E  k1.2.4 Example: Thermal barrier coatings 14
' q  z( I) ^7 x' k7 M1.3 Modes of ¯lm growth by vapor deposition 17* M, U6 e8 O: @  k
1.3.1 From vapor to adatoms 178 H9 F% y3 t% x% q! m
1.3.2 From adatoms to ¯lm growth 19+ G9 i- ^! }* n
1.3.3 Energy density of a free surface or an interface 223 e$ J, w  P! s# C) e2 L+ Q
1.3.4 Surface stress 274 A) H1 T1 k8 g0 W; q- z* G
1.3.5 Growth modes based on surface energies 30
! m2 n1 N" C9 t8 I- Q8 _8 U1.4 Film microstructures 33
, d3 m* U, x4 i& s4 Q2 Q1.4.1 Epitaxial ¯lms 34; w0 ~) K: T5 K% Y9 i
1.4.2 Example: Vertical-cavity surface-emitting lasers 43
* T$ Q, z& H. T' N/ m2 W, e6 O1 f1.4.3 Polycrystalline ¯lms 442 T6 l/ @% j5 s6 h! \( o; i( d" c* B
1.4.4 Example: Films for magnetic storage media 50( S$ Z; h' e3 ]' @2 D
1.5 Processing of microelectronic structures 52
6 Q  w0 ~: m* f* O1 `7 M1.5.1 Lithography 53
  B4 a, h- k% N1 Y% O1.5.2 The damascene process for copper interconnects 54) g' j0 C$ e, F1 g# c% U/ J, C" B- B" x
1.6 Processing of MEMS structures 57: @0 _6 j) l. R7 G9 i
1.6.1 Bulk micromachining 57
: d! x3 A5 v' N2 }; @5 x1.6.2 Surface micromachining 595 C" _0 y$ [  B5 q8 a4 s
1.6.3 Molding processes 60
# e* U& u+ `( q$ iiv' `+ s. M) B& ?4 ?7 v& Y" ~
Contents v) v- Y3 C$ Z: [- e. g
1.6.4 NEMS structures 62
- V( S3 W( e0 b: x! G% p( D1.6.5 Example: Vibrating beam bacterium detector 64# J. l! S( n) L
1.7 Origins of ¯lm stress 65. Y5 l! m+ B' j& w
1.7.1 Classi¯cation of ¯lm stress 66
# }  V1 O% Y" d0 Y1 M8 r/ \1.7.2 Stress in epitaxial ¯lms 68  s/ e1 C0 J$ m# e  O
1.8 Growth stress in polycrystalline ¯lms 694 S) M1 w/ \; J
1.8.1 Compressive stress prior to island coalescence 71' j+ O+ K, F3 j+ I* O
1.8.2 Example: In°uence of areal coverage 74
1 R8 z1 j8 @& K' }7 b6 _' d1 {1.8.3 Tensile stress due to island contiguity 751 g3 W' p* z3 c' P
1.8.4 Compressive stress during continued growth 77+ X. |- d' Q( j
1.8.5 Correlations between ¯nal stress and grain structure 78
" b' c5 a! f' Z; u* s0 S$ Z1.8.6 Other mechanisms of stress evolution 80
7 z9 U( i- y7 l9 G1.9 Consequences of stress in ¯lms 90
# |0 d' m- n, [1.10 Exercises 91
* l' L8 p7 G5 N0 Q5 [0 @2 Film stress and substrate curvature 93' @* P- ?* j# q3 e* f. W- ~
2.1 The Stoney formula 943 n* P1 y6 M& H+ \5 w
2.1.1 Example: Curvature due to epitaxial strain 99
9 ?/ H1 ?6 T4 p2.1.2 Example: Curvature due to thermal strain 100
5 M) d" j% R" l! Q3 U% b4 t2.2 In°uence of ¯lm thickness on bilayer curvature 1010 ?7 E. ?& V: G. e, J; [0 e
2.2.1 Substrate curvature for arbitrary ¯lm thickness 1037 l) h* T5 x9 `8 D0 D. U
2.2.2 Example: Maximum thermal stress in a bilayer 110+ |6 X' F5 F0 Z- p% W( v, U
2.2.3 Historical note on thermostatic bimetals 111
1 @' X0 f7 [* ~& }2.3 Methods for curvature measurement 113' j" z) M5 k! {: T* ?/ t) {+ Q
2.3.1 Scanning laser method 115
% Z' Z1 F( n' x; D2.3.2 Multi-beam optical stress sensor 116
6 a% u2 t- V* T0 A4 E7 F, V5 v: H2.3.3 Grid re°ection method 1183 z1 v4 @2 C! c0 z/ ]$ C
2.3.4 Coherent gradient sensor method 120$ Y& }( ^- ~: X* u
2.4 Layered and compositionally graded ¯lms 124
. c% G: W) c6 T  _: Z1 T  C! Q9 y/ h6 d2.4.1 Nonuniform mismatch strain and elastic properties 126
/ j' Z" Q/ X* f8 F( a0 {8 Y2.4.2 Constant gradient in mismatch strain 130+ o. R! g! E4 X
2.4.3 Example: Stress in compositionally graded ¯lms 131
! K: s$ L; _; A- h& H8 U% Z2 Z2.4.4 Periodic multilayer ¯lm 1336 ^3 R& G) L* b8 s
2.4.5 Example: Overall thermoelastic response of a multilayer 1349 ^* a; N8 x" y0 m, K& t' {
2.4.6 Multilayer ¯lm with small total thickness 136
; L1 d2 T1 }/ R; b# p% Z  X2.4.7 Example: Stress in a thin multilayer ¯lm 137
. J: |: ]2 U; L2.5 Geometrically nonlinear deformation range 1380 A  Q: Q/ w7 r: c9 h: \
2.5.1 Limit to the linear range 139" [, |: d6 o4 X4 g9 O9 t' t. d
2.5.2 Axially symmetric deformation in the nonlinear range 141
4 z; C$ ^3 G* b, f/ B+ `5 F" j, @2.6 Bifurcation in equilibrium shape 143) X. L) X2 I3 }- t0 r' A
vi Contents3 f$ q4 G3 F# Z
2.6.1 Bifurcation analysis with uniform curvature 1464 F) {" P; A# z: I
2.6.2 Visualization of states of uniform curvature 154- |. h% J* ], J
2.6.3 Bifurcation for general curvature variation 158! H' J) i/ S! t3 I
2.6.4 A substrate curvature deformation map 162: N0 R0 E6 r6 c/ i+ C7 [/ N1 S
2.6.5 Example: A curvature map for a Cu/Si system 1634 p6 I: h  t, w2 Z5 Y) h  R2 A- d* r
2.7 Exercises 164
0 f8 {7 w# t, M# A* F6 k' [3 Stress in anisotropic and patterned films 167
2 ~/ v  `' ^$ E8 X4 e# c8 J3.1 Elastic anisotropy 168
/ n( h2 f9 T$ W) W) \3.2 Elastic constants of cubic crystals 170
5 O7 v* {# }; T7 S8 k) R3.2.1 Directional variation of e®ective modulus 1727 [6 \/ u3 [  V- i1 V
3.2.2 Isotropy as a special case 174
8 J- J: E9 U; b) z3.3 Elastic constants of non-cubic crystals 175$ k# o: \, }" B0 L- K
3.4 Elastic strain in layered epitaxial materials 176! s: T+ j. {" t& z+ s( U+ w
3.5 Film stress for a general mismatch strain 180) n  e/ }- G8 P/ Z* r- T
3.5.1 Arbitrary orientation of the ¯lm material 181
+ r- {' y( S( t3.5.2 Example: Cubic thin ¯lm with a (111) orientation 1844 i" S3 A- v- V) |3 p2 {8 Y
3.6 Film stress from x-ray di®raction measurement 186
8 X6 a0 \! I! q7 D. I3.6.1 Relationship between stress and d¡spacing 186
. u$ v1 o/ X5 y3.6.2 Example: Stress implied by measured d¡spacing 1882 n7 L' g1 P# O5 W# T9 n
3.6.3 Stress-free d¡spacing from asymmetric di®raction 189
( ~( N2 Z8 K4 {# @. S, s3.6.4 Example: Determination of reference lattice spacing 194
1 w# j2 W( Y9 [: b! W3.7 Substrate curvature due to anisotropic ¯lms 195
, h3 j& o. ~# P% A3.7.1 Anisotropic thin ¯lm on an isotropic substrate 195, v' U2 P4 e) R; p, _* q
3.7.2 Aligned orthotropic materials 1986 ^: n* ~8 p2 D
3.8 Piezoelectric thin ¯lm 201( ]" }6 s% O7 t( T$ i& U
3.8.1 Mismatch strain due to an electric ¯eld 202
/ T: b/ F" a7 Z" t4 J% a) u3.8.2 Example: Substrate curvature due to an electric ¯eld 203
* A  m; t3 a/ r$ F% X; A3.9 Periodic array of parallel ¯lm cracks 204& \( P4 _% D2 V
3.9.1 Plane strain curvature change due to ¯lm cracks 206+ D! t: t5 @' {5 P$ f" P
3.9.2 Biaxial curvature due to ¯lm cracks 213# M1 p1 G* [3 a
3.10 Periodic array of parallel lines or stripes 218
, I" a+ v- @) Z, b, Q3.10.1 Biaxial curvature due to lines 218
9 {3 x: ?( h( E! \/ C# k3.10.2 Volume averaged stress in terms of curvature 224+ o( P4 E1 X' }
3.10.3 Volume averaged stress in a damascene structure 227. N" j- T+ F1 D" u$ m
3.11 Measurement of stress in patterned thin ¯lms 231
" ?) S# @( c0 ^! q: a3.11.1 The substrate curvature method 2318 A) f& a, G! z+ y. b8 P' l
3.11.2 The x-ray di®raction method 232# m& m+ g+ G+ s! Y6 v- m9 j9 `
3.11.3 Micro-Raman spectroscopy 232# j8 g; T$ }( l/ u
3.12 Exercises 234
) r, U9 @5 N( K" VContents vii
7 |  }( z9 i) I2 F+ N1 [4 Delamination and fracture 239
  v8 ?5 g1 S, Y0 a3 A5 R4.1 Stress concentration near a ¯lm edge 241
! P6 M* z$ U. M4.1.1 A membrane ¯lm 243
3 @0 t7 W; r" g; v4.1.2 Example: An equation governing interfacial shear stress 245
( Q  B5 V: a2 L2 Z( f4.1.3 More general descriptions of edge stress 247
% |) U$ ]2 `3 I4.2 Fracture mechanics concepts 2520 C; _* _0 h  J9 x6 K
4.2.1 Energy release rate and the Gri±th criterion 254  }8 X8 o5 J" ^  s3 [$ J
4.2.2 Example: Interface toughness of a laminated composite 2598 q$ ^' K  h( e6 L5 E* Q) X
4.2.3 Crack edge stress ¯elds 261
( z/ e4 y- E3 E0 v, v) l  @4.2.4 Phase angle of the local stress state 264/ o7 S& l4 b. c0 r2 W
4.2.5 Driving force for interface delamination 2659 V0 `- ^# H) `- v' V
4.3 Work of fracture 268
% i7 ]9 U! T0 I) R9 `4.3.1 Characterization of interface separation behavior 269" B) [2 M$ W; G- G; o5 B
4.3.2 E®ects of processing and interface chemistry 272- i8 j0 T  O2 S
4.3.3 E®ect of local phase angle on fracture energy 276
9 n( q2 L6 }. N/ h8 \) S7 h& ?4.3.4 Example: Fracture resistance of nacre 278
. g0 Q. ~4 O/ P% R4.4 Film delamination due to residual stress 2825 M" F' r) P/ f
4.4.1 A straight delamination front 285
  ?$ X: J- t6 Y0 G0 J+ c- y4.4.2 Example: Delamination due to thermal strain 287, z* F- j! m% G7 a
4.4.3 An expanding circular delamination front 288  Y/ ?( g+ B: V1 v' P
4.4.4 Phase angle of the stress concentration ¯eld 2934 A0 c2 j4 l+ O" [& }
4.4.5 Delamination approaching a ¯lm edge 2944 A# {+ n9 p6 d/ z# f* v) Z) A: y& F) [
4.5 Methods for interface toughness measurement 297
0 }5 B7 _* X2 `6 n. G" I4.5.1 Double cantilever test con¯guration 298- S7 z0 A2 y4 w
4.5.2 Four-point °exure beam test con¯guration 299& D( m6 H7 O1 g5 I6 Q
4.5.3 Compression test specimen con¯gurations 303- O. {( s. y7 r; B/ `
4.5.4 The superlayer test con¯guration 306% V0 y$ c" D$ T4 [* ?# N$ z
4.6 Film cracking due to residual stress 309
5 s9 e/ _9 N; U0 a( n0 \' u5 }4.6.1 A surface crack in a ¯lm 309) g5 _3 M6 n0 s/ s6 S
4.6.2 A tunnel crack in a buried layer 317, ?# \; T3 h" l% c5 p- Q: K
4.6.3 An array of cracks 319
6 b0 o. H8 h' r) X% Q( Q$ x4.6.4 Example: Cracking of an epitaxial ¯lm 3242 _) k2 o+ J8 J9 A$ E9 _
4.7 Crack de°ection at an interface 325
! V  T  E. V2 ?: w* F3 f. |4.7.1 Crack de°ection out of an interface 326: u" V. a1 C2 F5 H
4.7.2 Crack de°ection into an interface 330$ v) m( |1 C8 Z; R
4.8 Exercises 338
+ K* H9 N' h) m7 I5 Film buckling, bulging and peeling 341& g; {0 q# Y7 j8 o
5.1 Buckling of a strip of uniform width 342
$ f: }$ F, g. E5.1.1 Post-buckling response 343
% K8 w4 E& B7 m- }- D. U5 Hviii Contents
/ X/ u: R& f7 l5 ~0 g5.1.2 Driving force for growth of delamination 349/ T8 |" ~/ N# k$ a
5.1.3 Phase angle of local stress state at interface 350
' z# ]1 j. C( t5.1.4 Limitations for elastic-plastic materials 356
2 x) [+ ]/ ?$ L2 `- r- V3 v5.2 Buckling of a circular patch 358
$ E; h% X3 }4 N" f' `2 u0 r5 Z5.2.1 Post-buckling response 358
- L! M1 Q, d: C2 z; r: m5.2.2 Example: Temperature change for buckling of a debond 363( _4 n: P3 r% J
5.2.3 Driving force for delamination 364
! Z9 x+ x1 ~3 Z5.2.4 Example: Buckling of an oxide ¯lm 369
1 P2 b' k5 e. p. F+ J, l5.3 Secondary buckling 370- W; Q5 _: t5 d/ G, @
5.4 Experimental observations 3722 D& u# X, ?7 t+ I
5.4.1 Edge delamination 3723 Q2 |8 S5 n. l: ]! X' {
5.4.2 Initially circular delamination 373) z' G* V$ a4 |. U3 Q: _
5.4.3 E®ects of imperfections on buckling delamination 377
+ j% g  t9 q3 C1 }" A4 f5.4.4 Example: Buckling instability of carbon ¯lms 380
5 U1 g  ^9 S. |5.5 Film buckling without delamination 382" U7 h: K* k/ f) K. w
5.5.1 Soft elastic substrate 383
. g! Y* g; N' ]5 z. D5.5.2 Viscous substrate 385
' \+ v+ z- i0 {5.5.3 Example: Buckling wavelength for a glass substrate 387
4 Q. L5 U+ k) M3 V9 U& ?! R5.6 Pressurized bulge of uniform width 388
: N! W6 B  n' e( e# J1 Y5.6.1 Small de°ection bending response 3888 S2 Y% q- r5 Y$ j( s0 m/ h" H6 t  y
5.6.2 Large de°ection response 390! `1 V# A- S0 R9 _: q
5.6.3 Membrane response 393
( X6 z. A; h: U0 t* @! L7 a5.6.4 Mechanics of delamination 396: C" k/ \) z1 A+ r2 V
5.7 Circular pressurized bulge 400
2 w. o4 B2 p+ t$ K6 b! I0 \+ b5.7.1 Small de°ection bending response 401
$ k$ Z$ `' A6 ]: P, \5.7.2 Membrane response 401
9 W0 b% I( c/ a! W0 q5.7.3 Large de°ection response 404! w' U7 A3 v! i$ ~
5.7.4 The in°uence of residual stress 408
% W/ ^. M* {" j; M1 z5.7.5 Delamination mechanics 409
: m9 {. s6 h, D5.7.6 Bulge test con¯gurations 4120 J* N# P' W% J5 \6 M# u
5.8 Example: MEMS capacitive transducer 414( a4 J4 w6 F/ ]0 N' l3 x
5.9 Film peeling 418  E4 ]: G) v# R. y9 x, L
5.9.1 The driving force for delamination 418' R& X6 ]& T" G1 O( t# s: v! I/ i' l
5.9.2 Mechanics of delamination 419: c4 j+ h$ X- I3 G. Z
5.10 Exercises 420+ `% z* A* y* v" L, d. c! A  }
6 Dislocation formation in epitaxial systems 4224 D+ ^7 Y1 B2 r- p; g
6.1 Dislocation mechanics concepts 423/ x5 ]2 U) }! s( U5 @2 I
6.1.1 Dislocation equilibrium and stability 423% g/ a# A' x& m7 z/ p. P
6.1.2 Elastic ¯eld of a dislocation near a free surface 426
9 V) ~/ H2 H; W- |Contents ix" M8 h' `* E- C8 W
6.2 Critical thickness of a strained epitaxial ¯lm 432# C' o0 C* k! D5 W/ U0 Z
6.2.1 The critical thickness criterion 433
! |+ s* y0 m: C/ ~: a6.2.2 Dependence of critical thickness on mismatch strain 4369 G: W7 ^) F% M: T
6.2.3 Example: Critical thickness of a SiGe ¯lm on Si(001) 438+ T0 x, t+ k' B1 D, M+ b5 q" ?& K2 ~
6.2.4 Experimental results for critical thickness 439
9 C- F! V8 u9 _+ y9 q9 E" O6.2.5 Example: In°uence of crystallographic orientation on hcr 441  ?5 I8 Q; d! s/ u: W
6.3 The isolated threading dislocation 443( g: v+ @; e: R5 v5 N
6.3.1 Condition for advance of a threading dislocation 444
1 W+ G  y6 e% [, V/ D+ @: H% u6.3.2 Limitations of the critical thickness condition 448
1 Z) c, g1 R0 ^6 z6.3.3 Threading dislocation under nonequilibrium conditions 451
1 A' g3 S2 U0 x: t3 y! J% O6.4 Layered and graded ¯lms 455' n4 d- ]! O3 D
6.4.1 Uniform strained layer capped by an unstrained layer 4566 y4 v. D- J; Q
6.4.2 Strained layer superlattice 460
/ U4 L6 @6 _/ F. W3 e# l7 W0 J2 V6.4.3 Compositionally graded ¯lm 4626 S  ]$ A+ u& D0 l# G# y
6.5 Model system based on the screw dislocation 463
/ a* ?; u: F' v: b2 e6.5.1 Critical thickness condition for the model system 4646 n$ N( a, D3 u" j% ^$ m# V6 M
6.5.2 The in°uence of ¯lm{substrate modulus di®erence 465
4 g* [1 T  ~0 q5 X5 P' S6.5.3 Example: Modulus di®erence and dislocation formation 469! p3 w* d7 Y* y
6.6 Non-planar epitaxial systems 470
$ J: ^/ c) P& B9 Z9 B6.6.1 A buried strained quantum wire 472( K( e+ x1 T! `3 |: a4 Z
6.6.2 E®ect of a free surface on quantum wire stability 477
' `# A; u* h% Q* q; d" J+ x6.7 The in°uence of substrate compliance 482; x7 M  D7 K" C: w
6.7.1 A critical thickness estimate 483$ Q' [1 Y) s8 h& y7 F; A: r6 M
6.7.2 Example: Critical thickness for a compliant substrate 486
2 K+ t" D- |% a8 n9 x0 U+ a3 {6.7.3 Mis¯t strain relaxation due to a viscous underlayer 487
! \: ?$ E+ d. n, C: K6.7.4 Force on a dislocation in a layer 490% Z2 i* T, H" t
6.8 Dislocation nucleation 493" @$ |3 o5 G. x; ^8 j
6.8.1 Spontaneous formation of a surface dislocation loop 495
6 I2 H; k: q7 e( r6.8.2 Dislocation nucleation in a perfect crystal 497
% D+ L2 b! \3 Z* Y0 j/ q. D6.8.3 E®ect of a stress concentrator on nucleation 501
. J6 [8 }. b  y- F/ D6.9 Exercises 504! @1 ?  m+ A; ?3 m8 T
7 Dislocation interactions and strain relaxation 506
) T1 p! S; |. |1 K7.1 Interaction of parallel mis¯t dislocations 507, ]! M. b5 x5 p; q& q, |9 c: K
7.1.1 Spacing based on mean strain 508) s0 [1 z# k* f. V7 P' D/ i
7.1.2 Spacing for simultaneous formation of dislocations 509) C( e5 @" j1 z) z; v4 C" n
7.1.3 Spacing based on insertion of the last dislocation 511$ E9 ?1 n$ W7 H/ A
7.2 Interaction of intersecting mis¯t dislocations 513
1 b$ N( V" n3 u& W3 A0 D7.2.1 Blocking of a threading dislocation 515
( W+ }$ ]4 F" n5 ~7.2.2 Intersecting arrays of mis¯t dislocations 5208 Q4 m: P9 |9 n- w
x Contents/ W+ }' ?* C9 s! Z  R8 x4 t8 I
7.3 Strain relaxation due to dislocation formation 523
 楼主| 发表于 2006-3-11 00:14:49 | 显示全部楼层
7.3.1 Construction of a relaxation model 5241 ?/ q" J! d4 `; A, L% ~
7.3.2 Example: Dislocation control in semiconductor ¯lms 5274 J" B2 I  R' a4 ?: {0 C' t( m
7.4 Continuum analysis of ideally plastic ¯lms 531# N5 @- p" v2 ]
7.4.1 Plastic deformation of a bilayer 532
6 Y; N2 {/ H( _: `# |2 |7.4.2 Thin ¯lm subjected to temperature cycling 538  C8 y8 o( T% v& a
7.5 Strain-hardening response of thin ¯lms 541* |2 g, V% k5 `0 N
7.5.1 Isotropic hardening 543# j; V$ z6 `# K6 V; f; e
7.5.2 Example: Temperature cycling with isotropic hardening 546' R2 E  l$ P) a" M# r8 X
7.5.3 Kinematic hardening 547
# E" E/ f/ Q# D4 o7.5.4 Proportional stress history 551
" W/ R* r. a) K$ s7.6 Models based on plastic rate equations 553' M  Q  m6 J. s
7.6.1 Thermally activated dislocation glide past obstacles 555
, n* K% U4 f" }' @* H/ ~7.6.2 In°uence of grain boundary di®usion 558
* Y& T- m# p9 V% T' H" E. K' M7 y7.7 Structure evolution during thermal excursion 561( X1 u$ I0 Y& T
7.7.1 Experimental observation of grain structure evolution 561- ~: H! x+ r  V. O) J( g& I  Q
7.7.2 Experimental observation of threading dislocations 563
& p, k" [, U1 f# \7.7.3 Strain relaxation mechanisms during temperature cycling 566& n. D" p% [4 }
7.8 Size-dependence of plastic yielding in thin ¯lms 574
4 D" S7 D3 O; g7.8.1 Observation of plastic response 5744 ], p) s, g. p, J4 x4 Z! Q
7.8.2 Models for size-dependent plastic °ow 5797 N- c1 o3 U/ j2 f
7.8.3 In°uence of a weak ¯lm-substrate interface 582, j  P( z* P8 J
7.9 Methods to determine plastic response of ¯lms 584/ p# L& |, r/ [3 E5 \
7.9.1 Tensile testing of thin ¯lms 584  }2 m& q, Q8 B1 g7 [2 Z
7.9.2 Microbeam de°ection method 586% G& t' Q) V8 U
7.9.3 Example: Thin ¯lm undergoing plane strain extension 589
1 A1 O3 a& H. r  b+ Y! E4 w7.9.4 Substrate curvature method 5903 P7 Z! }4 G/ |, L1 u! H: f' `
7.9.5 Instrumented nanoindentation 592
1 K: ]. Z8 m) {& A& V+ Y  x) p7.10 Exercises 596" _6 v, |+ X  ^; R. g
8 Equilibrium and stability of surfaces 599
! i/ c% V; D% r% ^! T* Q, R8.1 A thermodynamic framework 6007 h/ F- G8 h2 h1 z- ?; W$ i
8.2 Chemical potential of a material surface 6020 X, @7 W  A2 Z  o
8.2.1 An evolving free surface 603
/ u9 m# Z8 N/ b& ~. o; H8.2.2 Mass transport along a bimaterial interface 607
+ O' I+ R' P+ \# V2 w5 G8.2.3 Migration of a material interface 610+ Y! ]. V6 A3 t3 `  ?
8.2.4 Growth or healing of crack surfaces 615
, M# H# {5 I; _* q0 t* Y9 B$ u8.3 Elliptic hole in a biaxially stressed material 617! f7 j8 z( h8 Z. Q' F
8.3.1 Chemical potential 6195 o/ s5 \( }5 v1 M
8.3.2 Shape stability 620) M1 w6 }5 k9 {1 p2 K
Contents xi4 v% y0 g, ^8 z' w) g" F/ ?# g
8.4 Periodic perturbation of a °at surface 624
" `- |, D. N" y2 q; i7 P$ L$ t3 H- H8.4.1 Small amplitude sinusoidal °uctuation 624% f- y: X6 M- q0 M  ?/ _- `
8.4.2 Example: Stability of a strained epitaxial ¯lm 629$ c( u; u* I% k
8.4.3 In°uence of substrate sti®ness on surface stability 6307 H% L7 u- f' @  ]; z
8.4.4 Second order surface perturbation 634
( b, G# V6 N2 z$ V1 l8.4.5 Example: Validity of the small slope approximation 638
, Q. S8 r5 e  E( ?4 L; e" Q9 p9 C2 x1 S5 `8.5 General perturbation of a °at surface 639. U3 h) h7 G, B, E1 |0 o
8.5.1 Two-dimensional con¯gurations 640
( m4 Z' {; @* D8.5.2 Three-dimensional con¯gurations 641* W, Y( Z  V& o$ r
8.5.3 Example: Doubly periodic surface perturbation 642& m" s- f. X' F! }+ M
8.6 Contact of material surfaces with cohesion 644
! f9 ]$ l. ?# B. \1 _8.6.1 Force{de°ection relationship for spherical surfaces 644
- C5 Y/ K9 U+ J$ W8.6.2 Example: Stress generated when islands impinge 6502 c3 L3 F& H; Y; n7 C
8.7 Consequences of mis¯t dislocation strain ¯elds 651( e; y. Q" e! w% o: v( [# C! x& |
8.7.1 Surface waviness due to mis¯t dislocations 652
0 E( y3 J3 \: d2 H8.7.2 Growth patterning due to mis¯t dislocations 654
4 j' ]0 o# ~$ A1 x. U8.8 Surface energy anisotropy in strained materials 6577 m  W% C, C9 z8 S6 t* R* u) F. W
8.8.1 Implications of mechanical equilibrium 658
# t' Y3 `$ |8 d' X# y! J8.8.2 Surface chemical potential 6631 A6 N2 D( V, U; p7 W' }
8.8.3 Energy of a strained vicinal surface 6642 v( x* h" e  w" W
8.8.4 Example: Stepped surface near (001) for strained Si 669
8 \3 V- q. ?+ G* D8 v" m. o1 j8.9 Strained epitaxial islands 671
* _; a; z) \# ~, N8.9.1 An isolated island 673
% h5 S: _& }2 z2 d! H8.9.2 In°uence of an intervening strained layer 679& A- ?: K& ~- z  K- Z0 _
8.9.3 In°uence of surface energy anisotropy 6819 Z3 w# ^" h! z0 r$ f
8.9.4 Nucleation barrier for islands on stable surfaces 684, `# @& R% p5 n1 T$ z6 e
8.9.5 Shape transition for preferred sidewall orientations 686
0 _$ i4 W+ v( m. x3 L8.9.6 Observations of island formation 689" f! U  ], m; j5 H
8.10 Exercises 694
- q! G/ H5 U; Y, f' j1 N5 y9 The role of stress in mass transport 697
  t6 i" v' m* ~2 v( V  A9.1 Mechanisms of surface evolution 6992 f6 u1 L: p! i% i& X1 _. r2 R
9.1.1 Surface di®usion 700
7 ?* l4 b) I) _6 Y3 c8 e9.1.2 Condensation{evaporation 704# ]: n# E* P" {# c$ s& n# V* Y
9.2 Evolution of small surface perturbations 7056 Q1 X% M, N7 H0 Q$ X- b: m; D  k
9.2.1 One-dimensional sinusoidal surface 705
$ p: P- e! @) {6 A9.2.2 Example: The characteristic time 707% _4 u! S4 `4 v
9.2.3 General surface perturbations 708
2 `5 c# A8 m+ N1 F7 M' ~* b) o9.2.4 An isolated surface mound 712
7 m/ p# z6 W; e7 s. r9.3 A variational approach to surface evolution 7148 X4 ?8 Y( B, }5 Y; ]/ s& m8 Z6 z
xii Contents9 p3 a' e' M' e+ ?* x1 X- X9 C- @# c
9.3.1 A variational principle for surface °ux 716
. b9 x& g0 y5 h: s9.3.2 Application to second order surface perturbation 720
7 |0 `; P6 X1 Y; w# M9.4 Growth of islands with stepped surfaces 723
# V" D) y9 f' Y  `9.4.1 Free energy change 724  f2 n+ a0 o# }( d! z( U: L4 }9 O& y
9.4.2 Formation and interaction of islands 726
8 T# C! E( y; Q! {- N) q. c9.5 Di®usion along interfaces 731
5 w* L+ l6 L& K/ g) _3 S, {9.5.1 Stress relaxation by grain boundary di®usion 732
: d7 k' R- ]3 a# x. }. g5 q9.5.2 Di®usion along shear bands during deformation 738
# p% W; O" L& U* w1 J6 K; r! I2 {9.6 Compositional variations in solid solutions 7409 \3 A6 O3 g& W7 e, v1 j( l: s$ H) i4 ]
9.6.1 Free energy of a homogeneous solution 741, C2 J  ]. l- F, r6 G
9.6.2 Stability of a uniform composition 7454 F  r7 I* i4 P, d, Q
9.6.3 Example: Elastic stabilization of a composition 749
5 I+ B) D6 B, `$ Q* e7 _  s9.6.4 Evolution of compositional variations 750
7 t. Z, H6 v2 L6 K9 P9.6.5 Coupled deformation-composition evolution 752
% ^( x7 b0 N# {+ i9.7 Stress assisted di®usion: electromigration 758& j& r  P2 Q7 g5 [; T2 S
9.7.1 Atom transport during electromigration 759  R/ c. z1 g5 ~& \$ j
9.7.2 The drift test 766% k, [0 u2 A2 j/ F7 A
9.7.3 E®ects of microstructure on electromigration damage 767
0 L: j; H0 d0 E9 X  F& b9.7.4 Assessment of interconnect reliability 771
! o. x$ p3 d$ m" ?0 j& m9.8 Exercises 7729 }! V8 m: m: T' e2 G7 G4 r" _
Bibliography 774
回复

使用道具 举报

0

主题

0

主题

0

主题

积分
943
发表于 2006-4-3 21:19:38 | 显示全部楼层
[s:3]
回复

使用道具 举报

0

主题

0

主题

0

主题

积分
577
发表于 2006-4-3 22:21:38 | 显示全部楼层
好好学习一下
回复

使用道具 举报

2

主题

2

主题

2

主题

积分
348
发表于 2006-7-8 03:56:38 | 显示全部楼层
我怎样才能看到楼主的书啊
回复

使用道具 举报

0

主题

0

主题

0

主题

积分
382
发表于 2006-8-16 22:31:53 | 显示全部楼层
how to read it
回复

使用道具 举报

0

主题

0

主题

0

主题

积分
405
发表于 2006-8-22 01:41:50 | 显示全部楼层
how can i get it and learn about it!!!!
回复

使用道具 举报

0

主题

0

主题

0

主题

积分
301
发表于 2006-8-25 16:31:52 | 显示全部楼层
急切盼望看到楼主的书,我可是好不容易才找到这个网站的
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|光学薄膜论坛

GMT, 2025-10-14 , Processed in 0.044847 second(s), 23 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表