|
<html>
, D# B0 }5 S6 [1 a j; }! u- |$ x, B5 z2 U: H' {7 S
! `, O, t7 m" P& m8 K% T% I" }& A+ i& n, U& c
<head>
) U& h8 o* `$ l' m2 u5 a a& m+ \( r2 \# ?6 u: t4 F! q, {/ `
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
" z8 Q. |0 x! A5 w/ A3 E& ]: |) [9 d" J- b
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
" \. D% z; A( N9 }. \" l# p
# {. v! Z- I; V8 \<meta name=" rogId" content="FrontPage.Editor.Document">
1 |7 H) D8 T! o4 M; K9 l, ]8 x& }
<title>本文介绍了一种用Sol</title>8 P$ S8 t+ H/ T' `+ }; n7 N6 U @# u
- ]" S, V% S" k8 q
</head>7 x5 C8 C& N0 z
0 g7 l$ h7 ^$ J |
6 M0 ]& n. }* D% D n: H, K
9 [8 @/ A1 p2 m; ]" f D" _1 z" K<body>
6 [* u4 g' a3 o' a, Z* i
1 m0 x, y9 t" Z( }$ S
; Y1 t" k% C2 w) S. w7 I% `8 s9 m$ ~, d6 |9 D
<table border="0" width="100%">
& N' I' o3 L0 p& v
: N% m) w: K5 Q <tr>4 s+ @% R/ ^- [) V' F
; X; Y! z9 n- ~ <td width="100%"></td>
; R c1 B6 ?4 x( w& Z0 a% a/ A2 C
7 B7 \& r L# ? </tr># _0 F; W8 ?, [* }- A+ r' N
+ V1 ?6 A9 O# j" t# } <tr>: Z" V/ U5 K* T' B
; X3 I, [$ l& z- B( n
<td width="100%">. m. m4 ^% U: @
+ s# s, F& a i0 h
<p class="MsoNormal" style="line-height:150%"><b><span style="mso-bidi-font-size:
. n9 b& m2 Y6 {# P
5 v+ Q% F5 H7 Y* d8 Z q& [5 u10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
) @+ n. U( s6 g% A3 i$ I0 H$ D- }# m
"Times New Roman""><font size="2">摘要:</font></span><font size="2"><span lang="EN-US" style="mso-bidi-font-size:
& D+ \3 V) G2 v N' |$ Q: c# _( H
10.5pt"><o:p>
{+ F/ p4 p& Z) H& B4 M" d
" ~( g$ n! _8 g/ N& `( g4 t# ]8 u2 t </o:p>! }" b. c( p8 C$ S# ?
$ i$ ~# _6 n1 q1 S" t8 I& e
</span></font></b></p>( O8 Q: r1 [& Y f" f: P
' C1 }6 @+ _/ E, m* h <p class="MsoNormal" style="text-indent:21.0pt;mso-char-indent-count:2.0; L! G, o; r) U( ]) Q, G; P
7 f/ w6 Y8 e( O9 P8 H% Gmso-char-indent-size:10.5pt;line-height:150%"><font size="2"><span style="mso-bidi-font-size:
6 A. k3 z/ P$ C, i
* _8 d; k1 n/ L- o2 e, ]( v8 N10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
" M; z7 d$ n' y! x
. g5 n& ?. S3 @4 d+ |"Times New Roman";mso-bidi-font-weight:bold">本文针对薄膜的结构性能特点,集中探讨了薄膜屈服强度与微结构,薄膜力学性能与功能性,薄膜力学性能测试与表征等科学问题。通过对几种膜基体系的研究,从理论上证明薄膜屈服强度高于相应的整体材料,且随膜厚或晶粒尺寸的倒数成线性增加。指出薄膜中的正常晶粒生长存在膜厚效应,薄膜的择优取向取决于表面能、界面能和应变能之和。认为薄膜电阻率与残余应力存在对应关系。首次提出了薄膜划擦临界载荷的物理表征以及划擦实验卸载剥落抗力评价指标,并计算了薄膜的断裂韧性。</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><o:p># O0 g, @) u: R2 O x' k; M$ T
' p4 q3 [5 l) X5 L- J! p4 Z$ n$ k
</o:p>8 j# B$ E! D, }; Z) |5 F
3 ^4 `/ j# v( B1 X6 k6 Y' W6 J
</span></font></p>
6 ?9 o) m( M; \; f
7 Y0 h4 A& a' T2 R# q <font size="2"><b><span style="font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">关键词:</span></b><span style="font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold">薄膜,结构与性能,表征,进展</span></font>% u) v- } o4 T. U6 L- t
! f3 G1 }% W1 b( @ <p class="MsoNormal" style="line-height:150%"><b><span lang="EN-US" style="mso-bidi-font-size:10.5pt"><font size="2">Abstract<o:p>
5 F- o& l) W. B) h! @/ ]5 a- j# k; N9 R- C% s' p$ L0 m+ o1 e+ j
</o:p>
; E4 P. @$ G! h, x+ w! d" n2 A3 i! V0 x5 U
</font></span></b></p>, V4 g2 j2 S$ d3 N: R2 ^; }
- m, p% C5 T/ O& `- \- X( n9 i8 O <p class="MsoNormal" style="text-indent:21.0pt;mso-char-indent-count:2.0;2 s) F5 s/ R3 Y S9 C, O
) Q1 f# W' t5 _) J
mso-char-indent-size:10.5pt;line-height:150%"><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><font size="2">In
?" _5 G+ Y, E# l8 H% X& r) {, I
; v2 B/ u$ V, m- t9 |9 f5 g9 A this paper, mechanical evaluation and characterization of thin films are
2 b2 }; ]# i. |& [+ J/ v. J3 n0 Z
4 ~# D7 a3 c( L) E summarized based on studies of the present group. The results indicate
0 l' i: f7 w) }+ E8 o7 q0 f
3 a) {3 W8 y& y T) T1 Q( O W6 J that the yield strength of thin films, usually exceeding that of bulk
+ W* o9 f8 _, K4 O) x6 z, O, w$ A3 V7 R$ c% R* U+ r
materials, is reciprocal to the film thickness or grain size, And the . }: z1 \ A: ~4 Z
8 B: A2 U/ w8 O
preferred orientation of thin films is not only correlated with surface 0 o, v% q1 ?' n
5 I5 _5 b) D. { k" H
energy, but also with strain energy and the interface energy between film 9 {+ x8 [! Z2 ]9 Q. x
2 |9 Q( v# P B6 Y
and substrate. The relationship between residual stress and resistivity of
2 I) H: j$ ? Y! b# B4 w
3 a! T+ z' {7 I9 K: K I" B metallic film is explored, and the increasing of resistivity with tensile ) b0 p" e( s9 y$ n
+ H4 k7 Q+ D" ? residual stress is explained with the strain energy theory. A model using 7 z- q q/ W6 ?" ~
: }& B- p2 }% a$ |8 x1 K" g) x2 b! Y
the circular buckle analysis is established for scratch fracture of DLC
7 x) @+ x% e) d7 }: j' x' m7 Y& ?
films, and used successfully to calculate the interfacial fracture E1 }/ k" K+ V3 `5 s/ m, K$ y
- t& Y5 L% C: m$ U: e7 X9 C7 [ toughness. </font></span></td>
2 z2 O: \ S9 h% S
+ a( |* x- t/ O </tr>
& T% ^( B1 u4 }1 o" o6 z- ?4 a& X) F6 j
<tr>
) H4 {$ W; [+ Q, p- P, U$ @6 v+ |: M9 j2 S7 @- O+ a
<td width="100%">
0 U3 S- Y$ h- Z0 ~. @8 Q5 S5 M3 j! u4 T- v
<p class="MsoNormal" style="line-height:150%"><b><font size="2"><span lang="EN-US">1. 3 z5 ~; E7 j* n: E: U. X
8 b) V4 ?, z! L l* J& o; `
</span><span style="font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman">引言</span><span lang="EN-US"><o:p>3 M% J2 h2 J2 Z$ I$ g
& b* E. {* N* J1 |) K </o:p>
" K! x! ^4 ^$ B8 T) S! K* K x3 c0 Y1 C4 x; [) [- P' q9 R0 n. m- s
</span></font></b></p>6 i6 a$ u; U" _
3 f/ l6 t9 h ]/ O( S <p class="MsoNormal" style="line-height:150%"><span style="mso-spacerun: yes; mso-bidi-font-size: 10.5pt; mso-bidi-font-weight: bold" lang="EN-US"><font size="2"> ) x- Y" m+ Q8 n) {* i: P
8 s" @9 y* ]6 k: @) \
</font></span><font size="2"><span style="mso-bidi-font-size: 10.5pt; mso-bidi-font-weight: bold">
2 l# s* i8 i3 F4 P. q2 F
0 ?" ]6 t! E3 E </span><span style="mso-bidi-font-size:10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";6 U9 M, o9 J: {; E+ Y! v
+ c3 A3 N5 U8 I, _! ]5 fmso-hansi-font-family:"Times New Roman";mso-bidi-font-weight:bold"> 6 g# o6 d k' ?
! e. S( ^6 d- S! I5 q6 b' S2 y 薄膜材料和薄膜器件日益广泛的应用及其可靠性指标体系的日益健全,要求学术界对其结构和性能的特殊性给出科学解释,相应的参照物除通常的块体材料外,也包括无约束的自由态薄膜。事实上,附着于基底材料表面的薄膜与无支撑的自由态薄膜其结构和性能存在很大差异,研究中除应注重低维材料相对巨大的表面效应外,多数情况下尚须考虑基底的约束效应和界面效应。本文结合课题组近几年的研究工作,着重介绍薄膜表面形貌、晶体取向、内应力、屈服强度以及薄膜与基底结合强度等方面的研究进展。</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><o:p>" A) z# o3 J! }
( W% \0 m* C# V# I% l& a. T( b* \
</o:p>
% D0 w' r$ L! K( `* Z& [7 d* g% `8 M L! v! p: o) `# ?
</span></font></p>7 ~- j5 v* t' p7 W# J6 O1 v
# S7 p7 F4 Z) y& b
<p class="MsoNormal" style="line-height:150%"><span style="mso-spacerun: yes; mso-bidi-font-size: 10.5pt; mso-bidi-font-weight: bold" lang="EN-US"><font size="2">
8 n; K, e9 S0 e# N0 S) M/ G$ e3 S/ `6 _, K
</font></span><font size="2"><span style="mso-bidi-font-size:10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";, W) u M6 M" \* n& B7 }2 O1 h; F1 \
! ?, ` k) f! E- }; I
mso-hansi-font-family:"Times New Roman";mso-bidi-font-weight:bold">薄膜材料由于厚度的超薄性,表面形貌的表征和影响不容忽视。研究发现,薄膜的表面形貌与真空沉积的热力学条件和动力学过程密切相关,可在一定程度上反映薄膜的形成机制和主控参量的变化</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold">.<o:p>2 ]: q# q6 F; N- e+ A3 X6 q
# E* A+ Q5 D) I" {6 Z
</o:p>
5 J: \7 t2 K: N# ?4 X
: W. }8 X, j8 X1 N/ F1 q( `9 N </span></font></p>: ^" a; G; N$ v
, n; S0 B+ m4 v; u% r E1 [6 D9 I <p class="MsoNormal" style="line-height:150%"><span style="mso-spacerun: yes; mso-bidi-font-size: 10.5pt; mso-bidi-font-weight: bold" lang="EN-US"><font size="2"> 3 E1 D; x# a" }6 }/ G
; O/ @. h" W, Z4 X [ </font></span><font size="2"><span style="mso-bidi-font-size:10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";
3 {+ }# S+ }0 V' q( _0 P0 g l; c
mso-hansi-font-family:"Times New Roman";mso-bidi-font-weight:bold">
3 }! t! u* E* V' O2 d
% B$ h$ B) U, Z$ K9 t3 W% y ] 由于制备方式的特殊性,多晶薄膜均存在不同程度的晶体择优取向。有趣的是,对于确定的基底材料,薄膜的这种择优取向主要决定于沉积方式,工艺参数一般只能改变取向的强弱;更为有趣的是,充分退火后,脱离基底的自由态薄膜按能量最小的晶体密排面确定取向,但有支撑的附着膜却可能存在各异的晶体取向。分析认为,基底的约束作用及由此产生的薄膜应变是导致“奇异性”取向的主要原因。</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><o:p>( A; ?5 K( P2 \" A2 w w
0 g: N0 E3 F4 E0 V7 C9 _! Y( ^ </o:p>6 G0 R7 B# r7 y2 C
0 T: I% j0 v) c6 c3 O( |; M
</span></font></p>* G) ?, o: l8 F8 O
: R. {0 J: i. M1 r+ T H o8 V' ~+ \ <p class="MsoNormal" style="line-height:150%"><span style="mso-spacerun: yes; mso-bidi-font-size: 10.5pt; mso-bidi-font-weight: bold" lang="EN-US"><font size="2">
u) H: U6 b1 a! Y& ~" b& U6 F# Y$ c/ P. N9 z2 m, U) U. s, @
</font></span><font size="2"><span style="mso-bidi-font-size:10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";: V7 [' C( {6 y7 {6 k
! j9 {; S0 z: o* Hmso-hansi-font-family:"Times New Roman";mso-bidi-font-weight:bold">
1 @6 J$ i0 A3 z3 Z1 Q
$ V p% G v+ G+ R7 Q' x7 e 薄膜的内应力或残余应力严重影响薄膜器件的长期服役性和性能稳定性。研究表明,内应力不仅制约和影响着薄膜的力学性能,而且与薄膜的电导率等物理性能存在一定的对应关系。特别地,不同沉积方式和沉积参数可能产生不同的薄膜应力,但几乎所有的薄膜其内应力与晶体取向均有良好的对应关系。经退火等高温处理后,这种关系更为明显。</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><o:p>/ B" T0 z P* _7 J) K l
7 l" f& x# C# q, `+ R </o:p>1 l4 g& n* ~0 Z/ U& w& Z3 m7 r1 ] q
3 a8 ~) u3 z; p& A0 T. Y1 G, f6 X! i
</span></font></p>
; X( b' i8 N7 Y7 M& h( V+ H V6 {( Q" F6 s+ N4 P, e, b
<p class="MsoNormal" style="text-indent:21.0pt;mso-char-indent-count:2.0;
+ x c: V" P! n( w( S( y/ N! |& G3 O' A4 R) T' M0 u1 S& K: O
mso-char-indent-size:10.5pt;line-height:150%"><font size="2"><span style="mso-bidi-font-size:$ x% S0 ] ], G1 b
0 `" r: x' K3 c0 g6 g" w10.5pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:- A2 [, r, i% u+ o; P: Z1 ~
, }1 o( e8 L0 A& L+ m) r( t! _"Times New Roman";mso-bidi-font-weight:bold">金属薄膜更多地强调持续应力或温度作用下的塑变和蠕变抗力,但需要特别指出的是,传统意义上属材料常数的屈服强度在薄膜尺度下已不复存在,由此提出的科学命题涉及低维材料本征属性和微尺度材料或器件表观属性的区别与联系。研究证实,金属薄膜的室温和高温屈服强度均与膜厚有关;相对于自由态薄膜,有基底支撑的附着膜具有更高的屈服强度;附着膜上存在钝化层或置于多层膜中的单体膜,由于上下两侧的力学约束,其屈服强度将达到最大。由此说明简单地套用传统概念可能在薄膜材料设计和失效分析等方面带来偏差甚至谬误。</span><span lang="EN-US" style="mso-bidi-font-size:10.5pt;mso-bidi-font-weight:bold"><o:p>3 L, m2 @+ w+ p9 y$ q: s
7 J0 q8 V( V/ \0 L1 v [ </o:p>
; @1 ~0 O( D% _0 F) c. k
! \6 z- U8 E& d' } </span></font></p>
& B, Y6 F+ Y. {! W- @8 }- w+ B% ~% a5 l& N% d
<p class="MsoNormal" style="text-indent: 21.0pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt; line-height: 150%"><font size="2"><span style="mso-bidi-font-size: 10.5pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-weight: bold">相对于金属膜,人们对类金刚石等一类主要用于摩擦学领域的薄膜更多地关注膜<span style="font-family: 宋体; mso-bidi-font-weight: bold; mso-bidi-font-size: 10.5pt; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman">/</span><span style="font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-weight: bold; mso-bidi-font-size: 10.5pt">基界面结合强度。尽管划痕法等传统方法由于设备和操作简单,至今仍广泛应用,但很少有人对其物理意义的不确定性和工艺对应的不一致性加以论述。据此提出基于原位多重纳米划擦试验评价方法,研究表明该方法有可能使确定的界面结合强度具有更明确的物理内涵。</span></span></font>+ M [, c* y6 i/ ~: R( D. U" C
* P, T; [, c. Q7 R: ^ <p> </td>- |9 g! v0 ?* x" ^
* X+ c- D h7 E) P9 c </tr>$ q) H- ^/ d; u0 Y; S2 W% O* P
' ]( `' P4 _' s& P! o. e: I5 T
<tr>
- }5 R T. D( F7 }) ~ {/ A4 @7 ^. r$ T9 c
<td width="100%"></td>
1 f( o4 K- s$ q* d! v& f6 ~& R/ n0 r/ f* |; [
</tr># R0 u8 C# e }5 _
0 s9 I" [% T# L( O- w
</table>
6 Z5 J) h9 C& B8 O4 b& v1 w1 a/ F) ^- B& x# z
' _) T) G" P* \" W
; `5 e# j- u; |( w. R% @ q</body>3 J! m0 i5 X$ ?" i4 l9 B
" ~4 D$ l6 g& ^+ A4 b! X
0 h, Y8 D+ H9 L/ E5 r: ]$ {+ Z. g/ O
( |5 ?/ C# U1 B' d</html>! {6 k- f& n* T
: c/ U7 `: `0 W5 {
1 g i6 y# H1 ~2 l0 Y8 _ f4 P) X4 S# _" ~! w
</td>3 M, R2 J$ j, \: O
: j$ M* m8 v4 _0 q$ o6 w
</tr>* `, C3 E6 X; L5 D) [! _$ ?
6 b; E! ?0 ~6 f' E <tr>
; \) b4 O# ^. ~0 X f6 w% T5 e3 Q) z6 ^
<td> </td>
7 k' c& B5 |3 W2 }* Z& V6 _
g2 l" ~+ k) J2 P! _; |* l! G6 u </tr>
& Z/ R' i* I' e' x$ u9 o4 K- M0 D8 P, M/ j/ i3 ` z. v
<tr> |
|