|
<html># z( t, ^+ U! e3 ^; s
$ D/ c# X9 Y6 ]7 M, r
! x* p5 v8 Z3 v9 z: b% e0 r
( c: t+ ?6 ~8 I& B3 x2 E. L<head>% @ K& _& l$ f/ \7 G' ~7 D, \
4 s" Y' n4 j! Q5 l: r7 B% @<meta http-equiv="Content-Type" content="text/html; charset=gb2312">: y$ V+ W5 w# W9 q* n1 Z" l& Y$ _
7 J& M$ r, f. f0 g& t! c
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">' l) n; k+ ?' c/ q7 s
1 q/ w- U& a" D8 P<meta name=" rogId" content="FrontPage.Editor.Document">
1 \1 H" Z1 J+ ^; U9 H4 v' ? X- ?2 F3 |' z1 ?
<title>本文介绍了一种用Sol</title>0 c/ D0 q5 B/ g: I( T
+ a, i. L3 k" Q! \</head>
- F, D% e0 @7 R8 M1 z: O7 h* b6 R. U9 g% j+ c8 ^
4 M: c9 ~$ E% n
9 ]" V) h1 E, I' z% Z9 \: ?' ]8 I<body>* A7 s$ m" w- S! _" U/ L8 p
% _" @. l6 [+ N- U8 p+ M, V
5 c- C1 N: ] d3 G
/ u) p7 R* a8 `! ~6 p<table border="0" width="100%">
8 L. R! V0 M* C6 Z( O* n7 c2 F- G; @) i
<tr>* Y5 \6 V c! J* r" p" b& G3 {7 S3 s
# \' f8 M$ F, D' G1 j
<td><font size="2"><span style="font-family:宋体;mso-ascii-font-family:
" h. | {" X3 q* q3 l0 v: k2 s' u9 h" \# m h9 v" t1 u
"Times New Roman";mso-hansi-font-family:"Times New Roman""> $ x5 I6 B: t0 ~7 g( v- ]" b
3 ^; Z! L% W& N% e+ P* a5 b 摘要:综述了硬质薄膜材料的最新研究状况。硬质薄膜的设计向着多元化、多层膜的方向发展。本征超硬薄膜材料,如:金刚石、</span><span lang="EN-US">C-BN</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";" q1 V1 g' |7 e9 D3 ?' p) E' d( v1 p
' W! O8 _& O! Emso-hansi-font-family:"Times New Roman"">、</span><span lang="EN-US">B<sub>4</sub>C</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:$ D0 s ]+ ]1 S1 g% u% ~
( v( C! Y. i, J* X1 _1 x' s6 C, v+ Q
"Times New Roman"">、</span><span lang="EN-US">TiB<sub>2</sub></span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
# k8 H9 Y3 B8 p6 }7 ?4 ^
% X, N# b5 C! w0 g"Times New Roman"">、</span><span lang="EN-US">BC<sub>4</sub>N</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
& p" F$ q/ O- a7 q" }* K; q% Y
" N( n( X+ ^6 O% r( m D"Times New Roman"">等的硬度可以达到</span><span lang="EN-US">50</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:' S! `7 [; A* c8 s5 k# b
0 J% E% M; d) ]1 @
"Times New Roman"">-</span><span lang="EN-US">80GPa</span><span style="font-family:
4 I" N. ^: O- C4 H( r
$ K( b9 [* C& o4 K }( i宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:"Times New Roman"">。纳米超晶格薄膜和纳米晶复合膜两类新的超硬薄膜的硬度分别随超晶格的调制周期减小,纳米晶晶粒尺寸减小而增加,它们的硬度都能达到</span><span lang="EN-US">40</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";# L4 i% t% }6 r5 i
& k. W5 G# Y' y# ~* hmso-hansi-font-family:"Times New Roman"">-</span><span lang="EN-US">70
& M5 ]2 {) S# \' v% W7 `# u8 |1 S
& e* g# y$ G1 M2 r8 z GPa</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:1 n" i' ~- ~3 R7 b& Q
3 G2 T8 K7 X) r0 ~. Q) I8 Q5 b"Times New Roman"">。最高硬度的薄膜材料</span><span lang="EN-US">nc-TiN
0 A5 b+ x7 t! B% |
" v1 {1 j- P- V% R. e / a-Si<sub>3</sub>N<sub>4</sub></span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:+ K" ~) X' V* h1 j2 s
6 L+ q. S" a- Y% i
"Times New Roman"">采用</span><span lang="EN-US"> CVD</span><span style="font-family:
3 K6 J- T/ \2 m* w
5 w- W: P9 N* }9 E p) a2 ^宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:"Times New Roman"">方法制备,加载</span><span lang="EN-US">30mN</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";
1 c+ P6 i1 u' c; L# Y6 [# j0 k" P, _& `1 z4 C: W0 s4 Y' c q7 v
mso-hansi-font-family:"Times New Roman"">测得塑性硬度(</span><span lang="EN-US"> lastic + N4 Y- T" s% r
4 Q1 X! g4 G9 U" g9 l8 L. p. a
hardness</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";% x3 E( Q& ~7 y
. g5 R+ B0 N( X1 g2 b
mso-hansi-font-family:"Times New Roman"">)</span><span lang="EN-US">H=110GPa</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:5 X" w' V( N9 ^; f4 U* H
* Y" V8 a' Z( J9 w( H
"Times New Roman"">;</span> <span style="font-family:宋体;mso-ascii-font-family:9 O* a+ q9 l4 Z# h$ Z( h" C
4 c6 @- H9 B9 }: x( r' }"Times New Roman";mso-hansi-font-family:"Times New Roman"">加载</span><span lang="EN-US">70Mn</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";% C C# ~7 e2 C+ Z
' {2 t4 y; `- ~" y9 o
mso-hansi-font-family:"Times New Roman"">,</span><span lang="EN-US">H=80
- l* }& w5 R5 t* I
: B8 n- C- A' E5 l" }, H GPa</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:: @, R" \1 s3 Y7 n+ ^
: n% {5 L3 b& A4 p( w: z# N/ D"Times New Roman"">。本综述对硬质薄膜的应用前景做了展望。</span></font></td>& v, O r8 m* [; w
; L: y# L; y! q) j </tr>& L8 n, D) J' P2 E9 w
; b& g+ q! C. f3 e$ V1 f" w
<tr>+ Y' G# k; |6 K3 ?4 S( m
# J. f! y% C! L; d+ a8 q+ a! j0 C <td width="100%"><font size="2"><span lang="EN-US">Abstract: The latest % x$ f7 m$ X! `! ^+ z, J2 V) X) x/ f
# e6 F v* i% R
progress of hard thin films was reviewed in this article. The multielement 2 z3 R$ i+ }% k. i/ Q2 u
3 [& e1 q6 j% v$ k and multiplayer is the important developing direction of hard thin film + G* J9 j# n: {! p0 X. v6 R
3 @% |' d) V, i
relently. The hardness of intrinsically super hard materials, Diamond, C-BN,
& f5 T- }5 E9 u' `- S: O' P( R, s, W( y
B<sub>4</sub>C, TiB<sub>2</sub> and BC<sub>4</sub>N etc. can reach 50</span><span style="font-family:宋体;
2 D1 k! [! s' ?+ G2 u
) L2 w- z" Z. ?/ h1 X( kmso-ascii-font-family:"Times New Roman";mso-hansi-font-family:"Times New Roman"">-</span><span lang="EN-US">80GPa
5 M/ X+ [! V w
4 `& I, X, a7 _. @* d; x1 A! Q) w8 p . The hardness of two new superhard thin films, nanosuperlattice films and / e8 U- k7 q$ F5 C9 e7 K& ]
: z" O" s4 y/ Z, Y: N3 w4 s
nanocrystalline complex films, which can reach the value of 40</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";
t) [1 S( Z# u" o5 y: v
) Q! i0 V0 d5 cmso-hansi-font-family:"Times New Roman"">-</span><span lang="EN-US">70GPa
5 s. e3 C7 @, b R$ }, }9 ]% N
" F f; T G* W# S) t' M ,increase with the reducing period of modulation and the minimizing grain
% Y, U1 x7 x+ E \, d: p; M1 B" P% Y- ~0 ^
size of nanocrystalline,respectively. The plastic hardness of nc-TiN /
! b; H: d3 Q4 a3 e
$ `7 W6 z2 f+ ~) C* b0 U% a: F2 ^ a-Si<sub>3</sub>N<sub>4,</sub> which possess the highest hardness prepared
$ Y! p; f2 `; K" x/ a# y0 k* y6 `" H
by PCVD ,was measured in a value of 110 GPa at applied loads of 30mN, in
) _% Q" F( K+ `* R1 m
* q$ v q: J' J" c# V 80 GPa at a loads of 70mN, respectively. Furthermore, the applied . ~" B# U: _! b0 e3 W0 z3 Y
1 I% P, m# B9 I, w, o3 a m
prospection of hard films materials was also discussed in the summary.</span></font>
' a( K. t) y$ v5 Q8 f Y
# t2 R5 g# n9 q } <p class="MsoNormal"><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";
9 n( a2 N6 {3 ?0 O: ^9 |, A. R, _! e
mso-hansi-font-family:"Times New Roman""><font size="2">一 引言</font></span></p>
# q7 y$ v" B' F+ G8 a( N
. G) s$ B+ u# z# G <p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;
9 w! r: V9 L) Q/ r1 v) \# v6 h
$ I8 l( u# Z, }$ p, F& D5 bmso-char-indent-size:10.45pt"><font size="2"><span style="font-family:宋体;mso-ascii-font-family:
; E! {4 }. @' c! ]/ {% r- ~$ x1 s
; l1 F! ]4 |; Q! z% l0 Y"Times New Roman";mso-hansi-font-family:"Times New Roman"">所谓“超硬”材料,系指显微硬度</span><span lang="EN-US">HV</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";
' _+ t1 E. O: d! X$ |, y7 J6 G2 ?# T2 ?) T* r( H" W
mso-hansi-font-family:"Times New Roman"">≥</span><span lang="EN-US">40GPa</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
( u/ ?7 H: F& N. I# ]- c5 a# g( R4 e$ c% j4 ^ N# o
"Times New Roman"">的材料。随着现代制造业的进步,难加工材料越来越多,金属切削工艺的发展,特别是高速切削、干切削和微润滑切削工艺的出现,对金属切削刀具提出了越来越严酷的技术要求。涂层刀具的出现,被认为是金属切削刀具技术发展史上的一次革命。将超硬薄膜材料镀于金属切削刀具表面,正适应了现代制造业对金属切削刀具的高技术要求,金属切削刀具基体保持了其较高的强度,镀于表面的涂层又能发挥它“超硬、强韧、耐磨、自润滑”的优势,从而大大提高了金属切削刀具在现代加工过程中的耐用度和适应性。此外,许多在磨擦环境中使用的部件,例如纺机上的钢领圈,内燃机中的活塞环,各种模具等,硬质薄膜材料也能大大提高其使用寿命。因此硬质薄膜材料可以广泛应用于机械制造,汽车工业,纺织工业,地质钻探,模具工业,航空航天等领域。</span></font></p>
) H5 R$ R" |7 K' N5 i8 q4 W0 y* c+ F, C, z4 q# Z( }
<p class="MsoNormal" style="text-indent:17.95pt;mso-char-indent-count:1.71;6 D' T$ O0 l# H, _. {
& ~7 B; T. R8 Y; q# f. k( S; I0 ~
mso-char-indent-size:10.45pt"><span style="font-family:宋体;mso-ascii-font-family:6 t' x# ]$ g' J$ I3 {
; c% M( I% E: |% W
"Times New Roman";mso-hansi-font-family:"Times New Roman""><font size="2">实际的工业应用,硬度只是诸多技术要求中的一个,此外还有高温硬度和韧性,抗氧化性,化学稳定性,硬质材料对工件的磨擦系数和磨损率,涂层的附着强度,导热系数等都有一定的要求。对于不同的使用场合,薄膜的技术要求各有侧重。</font></span></p>
6 s( \! p( v' Y V- T( Y
) y/ r; g# l0 \, |2 p+ f; } <font size="2"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">
, [1 o2 X# J* b1 i$ F6 u* h j5 I5 T* P- I1 t
硬质薄膜的制膜方法主要分物理气相沉积(</span><span lang="EN-US" style="mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"> VD</span><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">)和化学气相沉积(</span><span lang="EN-US" style="mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">CVD</span><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">)两大类,近年来,它们分别都有长足进步。</span><span lang="EN-US" style="mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"> VD</span><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">技术中,电弧离子镀和磁控溅射离子镀是工业生产的主流镀膜技术。电弧离子镀以其离化率高,薄膜生长速度快,涂层附着强度好等一系列优点,占了涂层市场的很大份额。九十年代中期我国从国外引进的七台大型镀膜机均为电弧离子镀,对我国的镀膜工业进步起到很大推动作用。最近磁控溅射离子镀,由于非平衡磁场,多靶磁场耦合,孪生磁控靶,脉冲溅射,中频交流溅射电源等新技术的出现,使磁控溅射技术在制备多元素复合膜,超晶格薄膜和纳米晶超硬薄膜方面,超过了电弧离子镀方法。先进的磁控溅射技术为沉积超硬薄膜提供了技术保证,完善的镀膜设备功能是保证超硬薄膜材料质量的基础。超硬薄膜材料是材料科学与工程中十分活沃的领域。</span></font>* j' Q1 D. I0 z8 I0 b- T3 _) V
. r+ O; y1 H$ R9 n$ V
<p> </td>- ?: t4 l- x5 g7 x% d/ L
% U. O: Q% |7 Y7 l( {
</tr>) a1 P0 z9 ]2 |; D
1 l* D, o& i# J. C</table>
% ?1 L( m$ ?1 R8 o$ w8 Y2 d
5 C* _8 l6 J- s1 c' c' @: F V! p7 X4 l7 g
$ @- _* r# W% m3 O' I s3 d0 ?3 t</body>7 L1 s4 R3 O% b4 O }$ k
3 j2 q- t: \2 u4 a) `. V
! ^! o. y2 E, A, u3 o
$ m/ K4 b: n5 t3 z( F/ N- c</html>
$ N5 q' B: {+ Q" t
3 w- t- g6 M9 V, r# `% z% w" q: k% \ U0 j. \7 B
* C- ^" C% d+ d4 m6 [2 |0 P6 c& j
</td>) P) B, w- S, f, q w
+ V: S; H7 ?% ~" F7 z
</tr>: _+ S' Z' N, B2 @) W
2 T+ K. g0 g9 F9 t" r; C
<tr>
9 W4 n1 q4 g8 a* w
2 L m. N4 |! B- W" P9 K5 R4 g <td> </td>
5 k* ~( c7 a0 T+ A& a
" e+ O6 f! @" } F, n </tr>
7 t6 e* F2 @" o' ^, N: s: G' f5 X2 ^8 S, z
<tr> |
|