|
|
新材料领域未来发展方向& ^4 i5 J: v$ Z/ Q
% i4 z: L. r4 a, j: \% V ]4 m2 Z
日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。
: I. j. O L* E+ M5 ~
1 R' r8 `6 t1 s! h+ } 1 半导体材料
7 A0 f+ F% {! C, M% S* a6 ~8 U8 g5 P" k& k5 a* k
随着高科技发展的需要,半导体及其应用研究的中心正向直接影响市场的微型或低维量子器件、改善传输质量和效率、增大功率和距离等方向发展,半导体化合物(GaAs、InAs、GaN、SiC等)具有重要的应用前景。
; I7 a2 l+ Y/ q4 Y$ I! y
% ~" }( }) U: X5 R& |( a+ D t 半导体材料领域的重要研究主题有:
* K( F+ [* Y; R/ R9 e+ w+ ^7 o5 O" A( H7 |! _% ^' K; E0 P: w
(1)Si基积分电路设计,就材料物性而言涉及用于门(gates)电路控制的纳米尺寸电介质制造及特性研究。
2 i' e2 D, D6 |3 j* G O+ V/ q' p! J @
(2)大能隙材料则在光电子学领域中具有关键的作用。可以预期,Ⅲ―V族化合物材料具有重要应用前景。
O& L/ G' w% x3 N
0 o$ x" x$ D% @* {1 a (3)纳米电子学及纳米物理学研究是微电子及光电子材料和器件发展的基础,涉及半导体与有机或生物分子耦合,低维器件的量子尺寸效应,半导体与超导体或磁性材料界面以及原子或分子尺度的存储问题。建立原子学模拟与连续介质力学及量子力学跨层次―跨尺度关联应是该领域中的一个重要的研究方向。! P, c' t7 n- U1 x8 D# Z: W
( D* b3 V& c* P! |" w
2 结构材料5 Z4 }- s; f* {5 n3 l/ V$ k3 h0 s
" w+ |8 C, u. c4 S6 P Fe基、Al基、Ti基以及Mg基合金作为力学材料的主体,构成了系列结构材料,其主要功能是承担负载(如火车、汽车、飞机)。汽车用钢近年来已从一般钢铁发展为使用灿合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。进一步还需要发展碳纤维增强复合材料或Al基复合材料。结构材料的主体有:
, t& G0 o; @" ?. Z
" G3 m' X! Y4 O) M! ] N (1) 钢铁
) _0 Z/ K; d8 p
: A6 h3 G2 m) C% v0 ? 钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。% N# g. a8 i! [& _/ m0 w3 e6 C3 h
% } E$ u) y' w7 G& J: F0 j (2) Al合金$ ^+ G9 m+ g4 w; j% h( q/ U& @5 F
% Y5 z% z4 M- }. d6 N
Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为“沉淀科学”,它涉及“相”间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。
7 I6 @' p, m' J# R/ g- i& v0 _- K! e; l' j- x7 k
(3) Mg合金9 `) G1 B$ h1 @$ B+ h/ L
: A' m, e+ \- d
镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型“绿色工程材料”、21世纪的“时代金属”。) i0 c6 C1 p) y$ F. Q7 l8 J8 b* f
* A( Z9 C: b) V6 G" d3 o$ h
(4) Ti合金
1 i8 l% A# z; P# E( |# G, @3 _
, ^" _4 q" S4 r4 Y% T, T' { Ti合金在军用或民用航空工业的发展中有重要位置,多相纳米尺度层状微结构问题对高强Ti基合金的特性具有重要意义,它将成为设计新Ti基合金的关键因素。 ^, u+ n8 c+ |
/ o0 S2 o: ]" s+ y9 j5 C( W& w! h
(5)结构陶瓷及陶瓷基复合材料* W. b$ F! k7 G
( a" c. w1 q; M7 r5 t E+ [
提高陶瓷材料的韧性和可靠性,降低陶瓷材料的制造成本是直接关系到陶瓷材料在高技术领域中应用的关键。先进结构陶瓷近年的主要发展趋势是:高延展性、超高强、超高韧、超高硬和耐高温的新材料探索。具体说来主要有:) ~5 X- o* ]; Q- O
6 q- L9 o0 }8 v3 g ●向多层次、多相复合陶瓷方向发展;强韧化从纤维增韧、晶须增韧、颗粒弥散强化、相变增韧等发展到协同增韧;
: \/ M, I, E$ V$ C1 K$ l ●向纳米陶瓷方向发展;; `, d3 g8 {5 G( w8 W
●加强陶瓷材料的剪裁与设计,如晶界和界面设计、晶粒取向设计、多相之间的复合设计、仿生结构设计等;# z- u, a. j$ L) Z# A6 T
●Ti3SiC2和们Ti3AlC2等为代表的新型层状三元碳化物和氮化物陶瓷;
$ e8 S1 m5 {. O6 d6 {+ h3 t U& x) A ●高性能多孔陶瓷材料;
( a5 w9 X# y0 G# j1 L: d ●突破低成本、高性能先进陶瓷制备工艺技术。
( W$ Y4 P8 W* {6 ^
8 I5 ~6 ^: N/ d4 r 3 有机/高分子材料
+ Y, Q* \. {+ g1 [ O |8 _4 I& w. U- {1 G5 x3 a' L
有机/高分子材料是现代工业和高新技术的重要基石,已成为国民经济基础产业以及国家安全不可或缺的重要材料。一方面量大面广的通用高分子材料需要不断地升级改造,以降低成本、提高材料的使用性能;另一方面各类新型的高分子材料将应运而生,尤其是有机及聚合物分子或少数分子组合体的光、电和磁特性将成为高分子向功能化以及微型器件化发展的重要方向。
2 s9 `$ Y: p- o6 c$ u. U# i5 E5 P( `; ^; `; G I
(1)分子材料与分子电子器件研究( h3 y! j" e# B5 \. i
5 x$ ~3 L! ^ j) g+ z/ e4 B( P% Q 该领域的主要研究方向是:新型功能分子的设计、合成与组装;分子纳米结构的构筑;分子的组装、自组装以及自组装技术在分子电子器件上的应用研究。这些分子电子器件主要包括分子电开关、分子光开关和分子电光开关的设计、分子导线、分子整流器、分子开关、分子晶体管、分子马达及分子逻辑器等。+ f s% k6 B6 i$ a) k5 |- q
9 c0 {8 e) c+ ` (2)光电信息功能高分子材料研究重点主要在:
1 ^7 v$ c: n4 U( u- v, ]: H
4 b, [& ^6 V/ A$ U0 z) C ●有机/高分子光子晶体材料:探索有机/高分子形成光子材料的途径;: c; `% p0 c2 O/ }
●超高密度高分子存储材料:开发存储密度高的高分子材料;" h4 |6 i( ] K& p. ]5 W# Z' p/ s
●高分子传输材料:研究和开发应用于通讯传输的具有较高光学透过性,光学均匀,且高折射率、低光损耗的高分子塑料光纤;0 C7 i- B7 u A! r
●高分子显示材料:有机/高分子电致发光材料、高分子液晶材料等,其发展方向为开发出具有高的电致发光效率、低驱动电压,具有不同发光波长(彩色)和长寿命的各种发光器件。
7 m2 }' m' c8 p) w5 w
& y1 }# v- e* `3 k! w (3)生物医用高分子材料包括:
- U' B' H: U/ e7 N ]$ W- q4 M; j5 i) i7 J4 B! a& f
●药物载体与控释材料:研究适于各类药物的新型生物降解高分子载体和控释材料的设计与合成,药物与载体的相互作用以及药物载体体系的生物医学性能(注射、口服、吸收、分布、排泄等)评价;: [4 b f. @) U" k& ]$ g+ x8 U( f( ^
●诱导组织自修复与再生材料:研究能够诱导组织自修复与再生新型生物降解材料的设计与制备,材料的形态、孔度、降解速度等与组织自修复和再生过程的相互作用关系; o" _, b& w8 B5 y2 ] z- A y. e
●生物医用材料的表面修饰以及生物相容性研究:研究不同结构的生物医用材料表面修饰新方法以解决材料的生物相容性问题等。1 E& s" `- l& |% G; u4 t Z+ t
. M3 h5 _3 j) V1 k- k7 D7 F (4)与能源、环境相关的高分子功能材料
3 J: G6 E$ z: I- P% C$ o& {# |; @) f% p/ P# I2 v
●燃料电池、太阳能电池的关键高分子材料:研究高能、长寿命固态电池及相关电极材料;研究不同有机光敏染料和纳米半导体结构体系的太阳能电池,柔性、薄膜太阳能电池的研究将是未来发展的重要方向;, e: k/ Q5 J6 I$ h P: _
●吸收/分离高分子材料:重点研究用于废气与废水处理的功能材料;具有高选择性吸附、分离功能的膜及纳米介孔材料等;
1 H; L5 D/ d. i ●环境敏感材料与材料智能化:研究对微量有害物质等环境因素高灵敏度感应和传感材料及危害防护材料等;0 ?; J I, k- A
●绿色、环保高分子材料研究:重点研究天然高分子材料(如淀粉、纤维素等)的改性等。
6 g) m3 q6 Z; r9 L6 {
7 }; C: y/ j3 C" j2 T, z 4 敏感与传感转换材料
1 q5 B6 W K% y |6 p8 v: L* A! P
, m% {7 L# ]0 C4 e: k 敏感与传感转换材料是指对电、磁、光、声、热(温度)、力、化学、生物变化敏感并具有转换功能的材料,包括磁性材料、磁电材料、磁阻和巨磁阻材料、电磁液流变液体、磁致伸缩材料、电阻材料、超导材料、感光和发光材料、介电材料(介电、压电、铁电、热释电、微波材料)、气敏、湿敏、温敏材料、热偶、记忆合金及储氢材料、生物传感材料及智能材料。! y4 I- K4 H2 A D; j* z
4 _. D/ d4 j3 _ y7 G
一般说来,任何一种物质,在不同的温度、压力和外场(如引力场、电场、磁场等)的影响下,将呈现不同的物态。敏感与传感转换材料的关键是突出各种因素时相变中的变化过程。
# h8 _( g7 C) j/ ]
/ m+ v% p$ `6 g2 X 5 纳米科学与技术 Y% D& e! G/ e4 v
. w9 {7 H9 A9 \& ^* o+ y (1)研究方向
6 X# P& r) L$ A/ Y: r# Z5 k
" Q* Y2 T' N; }' l( g# H7 v 研究物质在纳米尺度上表现出的物理、化学和生物特性,单分子的特性和相互作用,为以原子、分子为起点,设计和构筑新的纳米结构、材料和器件,提供科学基础和理论准备。加强对纳米结构新的测试和表征方法的研究和探索,加深对纳米科技理论和方法的理解。
1 k; c; f3 o. w3 ^
. Y1 U' U: I& x- @ (2)应用方向
2 ^: h% B. w9 f7 T
5 b( K& x& `, l. a Q 纳米技术的发展有5个主要方向:
5 i% l: [& ^. A+ ~- R+ |7 @1 b8 l3 {, s7 C4 Z0 z
以纳米材料(颗粒、C60、碳纳米管)为代表的方向;以从微电子向纳电子转化为代表的方向;以微光、机、电集成系统向纳光、机、电集成系统为代表的方向(MEMS――NEMS);以纳米生物学、系统为代表的方向;以纳米物理化学性质、制备、表征等为代表的方向。
8 {. H2 _: D) f9 S' o& C+ m Q9 z( @. I7 q) A
(3)纳米技术在纺织领域的应用
' K+ _' b8 b' ~
, W( d0 T7 n3 f+ V4 i1 h$ j 目前,纳米技术在纺织方面的应用主要表现在纳米复合纤维及纳米技术在纺织后整理等方面。
& c9 z2 X& F, U0 S
; s1 J" k' ?+ O, w x; I6 c. g ①纳米复合纤维) ]1 c; S" k0 n2 q) q+ l
6 w9 a4 X, m$ {& T+ N3 q% {' }
化学纤维中加入纳米级添加剂,可以制造出新一代功能性更强的、不同用途的优良复合化学纤维。这种方法的技术难度比直接制造纳米纤维的难度要低,是近期内纳米技术在纺织领域中应用的主导方向。结合当前的实际情况,应考虑发展以下几类纤维:: @, R3 X' M9 R/ g, P- S
- X/ V3 z: \& B ●抗紫外纤维
* J4 ?4 }, p3 Z! I, n
! H3 b' Z$ @7 Z- v) `1 z2 P 纳米TiO2和纳米ZnO等陶瓷粉,由于小尺寸效应,对光的吸收性很强。以它们为无机紫外线屏蔽剂制成的抗紫外线型纤维或织物,不仅可全面抵御UV-A、UV-B对人体皮肤的伤害,而且还能反射可见光和红外线,具有遮热功能,以此类纤维制成的织物,便于印染整理,手感柔软,透气凉爽,服用性好。目前从国内外研制生产的品种来看,涉及到涤纶、维纶、腈纶、锦纶、丙纶和粘胶纤维等。' Z" A; D, R8 W# q
% m4 m- x+ P2 | ●抗菌、抑菌和除臭纤维4 T# m7 m( \2 }3 G% ^% J
. O. c( i9 e( ` ^ L 纳米级TiO2和ZnO等光催化无机抗菌剂可应用于超细纤维等特殊场合,是前景广阔的新型抗菌材料。它们可作为添加剂加到涤纶、丙纶、锦纶、腈纶、粘胶等化纤中,赋予各类纤维及其织物抗菌、抑菌、除臭功能,从而起到保健和美学作用,所制成的纤维不仅具有疏水导湿性、快干性、抗污性、密度小和手感柔软等特点,且抗菌性能持久。
& o( x! r1 w1 s6 T
; Q. ^' t. u# B) n0 L$ v! [) L ●导电纤维
) @+ z4 X+ A. }9 G; @- t0 n1 ?2 y t. S
将二氧化锡和氧化锌等白色纳米粉体与纤维高聚物混合纺丝或通过吸附法及浸渍化学反应使其覆盖于纤维表面上,制成白色导电纤维,可用来制作防护服、工作服和装饰性导电材料。 `6 k! G9 u' |. Q) j3 o' r" y
# G! }* i8 g5 W6 F ●远红外纤维
+ U3 ]- j; l p+ e+ u5 V
# G* N- } i9 z3 a, N# e 此类纤维可以吸收太阳光和人体辐射的远红外线,也可以发射出波长和功率与其温度相适应的远红外线,因而使织物具有更好的保暖效果;它还能吸引人体自身向外散发的热量,并再向人体反射易吸收的远红外线。同时,由于特殊的物理效能刺激人体生理发生变化,还能达到保健和抑菌的作用。远红外纤维除了具有反射功能外,还兼有抗可见光、近红外线和抗紫外线的功能,可用来制作夏日服装、野外工作服、遮阳伞及装饰用布等,孕育着十分广阔的市场。
7 [1 a4 @. q: T( k# F" m. }) S4 P, S, d: Z5 ]3 L- C
●空气负离子纤维* F4 M: @7 Q4 S! c& z3 s
6 {+ K( ]. c7 a! n* B2 R! r# r
奇冰石纳米复合粉是将多种天然矿石进行深度加工,并添加纳米TiO2等纳米粉体制成的性能奇特的超细粉体。添加了奇冰石的丙纶、涤纶纤维,可以产生空气负离子,发射远红外电磁波,还可以释放人体需要的微量元素,因此可制作保健服、内衣、室内装饰布、窗帘、家用纺织品、汽车装饰布等。它还可以为人体随时补充所需要的微量元素,实现了医药工程和纺织工程的完美结合,易被广大消费者接受,具有较大的市场潜力。% D& w. W$ P [; ?+ |( g
! @$ X4 \$ U0 u5 g& a' Q( s: g ●高强高模量纤维2 Q" X8 I. p1 B# J& v4 z& V8 c9 U
6 z4 U. ~2 I2 a1 z; X. Y
纳米碳管的强度极高,弹性模量也很高,甚至可以弯曲后再弹回,可用于制备高强高弹性纤维。另外,粘土与聚合物的复合能够大大提高材料的强度和模量,北京服装学院利用纳米粘土的这种功能,与聚酰胺插层聚合开发尼龙纳米功能纤维,使纤维的强度和模量有很大的提高,尤其是模量,可以提高2倍,但纤维的纺丝性能没有明显的改变。
+ h2 U$ B" p( A+ Q4 x7 W: A1 {3 ?% {: `
除了上述功能纤维以外,采用纳米粉体对纤维进行改性,还可以开发多种功能纤维,如变色纤维、耐热纤维、芳香纤维、磁性纤维、储能纤维、发光纤维、阻燃纤维、吸水吸湿纤维、防水拒油纤维等。
* Y* _6 Z9 O4 ^ v& F8 s6 T' r H! \- ]) c) q
②纳米技术在织物后整理中的应用
& [5 {4 ]( ^" t
1 e& |* q0 I' ?" D) e9 ]+ n( E4 K; h ●直接涂层法获得功能性涂层/ ]+ [" D5 T/ x1 r, g
# }* W& d, q8 V* Y 先将纳米微粒直接加入到织物整理剂中,使其均匀分散,然后使织物通过包含纳米微粒的整理液,在粘合剂作用下直接涂覆在织物表面,形成功能性涂层。0 u8 d2 N9 x) Q1 h) s, ?
* I: m! u2 ^" x. k9 g" e$ J ●接枝技术法获得功能性涂层" ?6 x, X, D- m% m- p6 Q/ i
4 ~5 W( z$ b t( V4 k2 q/ I 对于某些涂层牢度不够、功能性不持久的情况,可采用接枝技术。具体可采用两条技术路线:一是将对纳米材料有很强的配位能力的有机化合物接枝到棉纤维上,制成简单的有机分子模板,再将纳米团簇组装到纤维上;二是在制备纳米微粒时,用可接枝到纤维上的化合物作为捕获剂,使纳米微粒通过捕获剂进行表面修饰形成“团簇”,再把“团簇”接枝到纤维上。
Y2 k( p+ s# D' K
# e$ h2 o% w) B- [0 \% q } (4)纳米改性涂料
* ?. [& r s# d; r6 v( x- E6 H( I9 H% n7 O- d" F5 E5 ]
实验研究表明,在各类涂料中添加纳米材料,如纳米TiO2,可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,广泛应用于医院和家庭内墙涂饰;防紫外线涂料,用于生产防紫外线阳伞;吸波隐身涂料,用于隐形飞机、隐形军舰等国防工业领域及其他需要电磁波屏蔽场所的涂敷。在涂料中添加纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍提高,涂料的质量和档次大大升级。纳米二氧化钛超亲水性和超亲油性的开发应用将为涂层材料带来革命,使表面具有自清洁功效,防污、防雾、易洗、易干。纳米材料改性外墙涂料的耐洗刷性可由原来的1000多次提高到1万多次,老化时间延长2倍多,利用纳米材料的光学性能改性后的颜料色彩艳丽、保持持久且极易分散。
7 B- u& p$ A% }; M0 J& \
( ?8 `' {; _! P/ z/ c9 { (5)纳米稀土
% z2 c- B3 _' q/ ?8 b$ ^7 A
1 U+ | N1 Q" z/ w 纳米稀土是目前国内纳米材料发展的热点之一。目前正在重点开发纺织纤维用纳米稀土材料、PDP\LED用稀土发光材料、稀土荧光粉和高性能稀土合金。) i; s, ~( Q9 \5 E# d; q
+ |9 |3 \( n* ^! b% t- S" {
纳米稀土的主要应用方向为汽车尾气催化剂(如纳米CeO2)、纺织纤维添加剂、高性能稀土发光材料、陶瓷及涂层等。
9 y, C. Q# V; P* r& c
: M/ Z$ H; W% `1 I4 Z0 }: _8 Y$ i (6)纳米陶瓷
2 w) J, g3 F( z( j( S, v: g3 _# a# v# B7 ^
3 U. p+ J) ?" _1 \- A% l 氧化钇锆是一种应用广泛的陶瓷材料,用纳米氧化钇和氧化锆能在较低温度下烧结成氧化锆陶瓷,具有很高的强度和韧性,可用作刀具和耐磨零件,也可制成陶瓷发动机部件。此外,稀土氧化物等纳米材料可以掺入普通陶瓷粉,喷涂在陶瓷基体上形成无机陶瓷腊(膜),代替聚四氟乙烯有机膜,做成耐热、无铅、不粘的日用陶瓷炊具。$ S+ z* ?& f) u7 D% s1 W
9 T) j! R+ l% I7 u' H; p7 u v
(7)高分子纳米材料& p& E/ V: d W/ `
+ q$ [# U f0 ^6 ]0 V4 h" l 高分子材料将是纳米材料的主体之一,高分子纳米材料的发展将主要涉及如下一些重要方向:
G% E: N9 w* S4 D- v$ }# x" f7 `' g* c# a- F
●结构、尺寸、形貌可控的高分子纳米材料制备技术:高分子纳米材料的形成机理与生长动力学;高分子纳米材料的制备新方法;高分子纳米材料的稳定性。
, y" f& \- G7 F& D& f/ F$ D, y# X ●高分子纳米图案的有序化自组装技术:运用分子组装、自组织和模板技术,组装成各类图案化的高分子阵列,形成纳、微电子器件或者作为纳、微电子器件的模板或者衬底。
1 m" w* |; A8 k ●高分子纳米复合材料:研究高分子材料与其他纳米颗粒或者纤维的复合,将有可能使高分子纳米材料走向实用化。
0 d& m' j9 R- T5 D% q+ z$ H& O5 k
5 y7 o* h5 X0 V' ?& j0 B6 z (8)纳米电子学9 ]2 N# ^) E. f! g& Q
+ c+ j2 b3 ~/ m2 s8 t
纳米尺寸效应导致电子运动受限,诱发量子尺寸效应。纳米技术在实质上推动了在分子水平上具有新奇的物理、化学或生物特性的新材料、新器件设计。从这个意义上讲,纳米技术的中心在纳米电子学领域内得到实现。$ V9 _4 Y/ E# o0 j+ \; w* r
9 V$ m; l6 C+ I0 F# B 预期Si基纳米器件仍将保持中心的位置。相应的关于量子尺寸效应、隧道效应、交换耦合、纳米线的传导性以及纳米尺度上的磁性和铁电特性的研究,构成设计纳米尺度新器件的物理基础。( V1 s4 n5 k, }
v& p4 s5 L& N; Q
分子电子学及单壁纳米碳管和富勒烯(碳原子团)的研究,光纳米电子学及III-V族量子点材料和器件的研究,都是迅速发展中的纳米技术的新领域和新趋势。基于纳米磁性材料的巨磁阻现象及相关器件的研究也在迅速进展中。" A+ [8 D3 D/ }# Q! ?9 c
+ }" Z( h; h9 A' a+ y( d (9)纳米发动机: @ F9 b! R- N& P
" z* r% K/ [" o- D6 k, b- q# o 生物分子纳米发动机仅有一个病毒大小,由两部分组成:一部分用有机物充当发动机,另一部分用镍无机物充当螺旋桨,整台发动机长750nm,宽150nm。这台发动机由ATP(三磷酸腺苷)提供能量,由ATP合成酶驱动发动机运转。每加一次能量,纳米发动机可连续工作1小时。科学家高度评价此项科技成果,认为生物分子纳米发动机在医学领域将大有用武之地。例如,它可以充当一个“小护士”,巡视全身;它还可以在体内充当一个“小药剂师”,解释细胞发出的化学信号,计算必要的剂量,在人体内直接分配药量等。2 P( h; |7 e# `% m- N9 H
# t( s! h6 D# o 6 生物材料6 ]- a9 M5 M G4 e+ L
$ J% K5 ^9 {) a 人造生物类材料是指人造类生物材料和人造具有生物活性或某种生物功能的材料,也包括天然生物材料的改性、处理和在材料制备方面的应用。
$ r0 t3 d) C9 U6 W1 u& e7 ^/ Z' e6 F2 A7 q; m/ }/ H
类生物材料包括仿生材料、生物医用材料、生物灵性材料,即在电、光、磁等作用下具有伸缩功能的类似生物的智能材料,如聚合物人造肌肉(科学美国人,2003,12)。
' s' k4 I2 l4 F8 L' f) B6 C$ C! l* T
" p6 P. Q- V1 Y$ c 这门学科特点是物理、化学、生物、材料、光电子的交叉;纳米、微米,宏观尺度的交叉;原子、分子、大分子、超分子的交叉;无机、有机、高分子的交叉和复合。关键问题是自组装。
2 I1 w& E/ w* ?# F$ x
7 O! y4 D" I8 L; c% g 7 复合材料) R- C% h8 b/ i3 S* B- v+ c
: C& s! L2 L# t% O4 |# _0 U4 u5 y 复合材料的新课题包括不同尺度(纳米到大分子)、不同形状(颗粒、纤维、薄膜、块体等)、不同方式(混合、融合、键合、接枝等)的有机―无机复合、聚合物―聚合物的复合、染料与织物的复合。1 o$ t/ `- ~9 Z" N) v
4 M% `. j: ^4 t8 J# }9 A 8 今后一段时期的重点方向
) i) Y; h* e' ]) M7 u+ `' v7 M3 ~% H. u; o' m1 @! Q6 k7 }
(1)材料与器件( N4 c; ?& z6 t H0 e8 \1 F# E
9 m3 O" }, P9 h' j- ^ ●半导体照明――以白光照明为龙头的宽禁带半导体 P' a: u [" Y' o
●全固态激光器――以紫外、深紫外、三原色为龙头' N+ J7 X9 Z( D1 A4 Q4 ^% ]
●微光电子材料和芯片――以12英寸硅片和光电芯片为龙头
( c% A( f, W3 G3 k- a ●先进生物类材料* N/ X# C. o) K$ P$ T& ^7 `
●优良服役性能材料/ D8 ?/ @5 S& L9 ~6 C" }
●氢能与燃料电池关键材料2 i& B# a* f; d7 |4 H! d' F
●飞行器材料
# W1 c) ^% ?8 {; e: o J4 [1 n$ Z; }' q/ f0 ^; f
(2)技术与装备0 l* A( l! _' e. V
; ^8 r4 d0 Q3 C- \5 \! V0 @
●钢铁制造新流程
. B9 b; x1 n1 {+ x/ p2 Y% J6 m! r" O ●高性能材料复合技术- ^4 R d1 H& `' `) [
●废弃物的资源化和回收技术- A- M* H, f. W' L: C3 E
●超大吨位锻压机
9 H/ S' h/ _5 x+ V% D* a: p ●大宗料高效化学反应装置
" B, x" R# \1 e, X/ ]' X ●纳微米加工、表征装备 |
|