定制高端激光薄膜

光学薄膜论坛

 找回密码
 注册
搜索
本站邀请注册说明!
查看: 1225|回复: 0

Optical Filter Design and Analysis(介绍目录)

[复制链接]
发表于 2006-3-19 02:29:11 | 显示全部楼层 |阅读模式
Designations used by companies to distinguish their products are often claimed as trademarks. In all$ p& q/ X, c8 |, X( @4 Q" z
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial# \- u5 ~, X: G. w" D/ ]; U
capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for
" a& P- {- Q. zmore complete information regarding trademarks and registration.) h1 O/ o1 o5 ]4 X: P3 {- r( f
Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved.
  o$ I* m, g9 F& cNo part of this publication may be reproduced, stored in a retrieval system or transmitted in any form5 {  u% t5 ^5 V: M  }- _
or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
# I1 }0 v* u7 D6 l; v1 ~recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
3 }, i- H" I6 h+ F8 TCopyright Act, without the prior written permission of the Publisher. Requests to the Publisher' n' f+ f0 X/ Z& R$ [  I
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
% v4 P' V8 i! m" C4 [605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:' X: k) s! d0 A+ ^* ?* S7 G9 s# a
PERMREQ@WILEY.COM.; Y6 Z6 |' z; q  Z. V
This publication is designed to provide accurate and authoritative information in regard to the subject
/ J) u) [" ?( ]) x* o  S7 Hmatter covered. It is sold with the understanding that the publisher is not engaged in rendering
0 K$ b. \$ t1 {  `! K) h3 Mprofessional services. If professional advice or other expert assistance is required, the services of a
, o; ]$ W) a7 f8 Z& \, P' J* Lcompetent professional person should be sought.- ^, R7 M- o0 q
ISBN 0-471-21375-6! {8 ~) L7 R6 ]6 @. L
This title is also available in print as ISBN 0-471-18373-3.
" t' c$ ?9 y7 T$ y/ S/ {* ZFor more information about Wiley products, visit our web site at www.Wiley.com." ?- r' C* N0 V4 O3 F: v0 e. m! G
To our families:9 |0 ?+ U+ g0 ~1 u4 p, c
Eric
, |2 E3 U: ~8 T! l7 O0 j+ k* `0 p/ hLucia, Suqing, and Yumao" X, V0 \) o) F" W, b5 U4 v/ c
Contents
* S9 M3 }* a: m! Z$ N( ^Preface xi# V' i6 F; G9 t6 f5 E
1 Introduction 1/ k0 a+ {7 q* ^: }$ b  O& y6 |
1.1 Optical Filters 1
6 O) I' z2 u0 e) Z7 p& C1.2 Filter Applications in WDM Systems 7
4 Q- L' k1 m+ ?# {1.2.1 Bandpass Filters for Multiplexing, Demultiplexing, and Add/Drop 8
' ?, u3 L) _6 }4 L' w1.2.2 Gain Equalization Filters 10# D$ `5 r: W- @/ C, R3 m
1.2.3 Dispersion Compensation Filters 130 g# y- n# d3 [% i( L" F9 X
1.3 Scope of the Book 14# ~2 b9 Y" j$ {% r; Z
References 15
/ ~' G& Z! V  f6 @2 Fundamentals of Electromagnetic Waves and Waveguides 197 K: x; V  a$ q7 b
2.1 The Plane Wave 196 Z3 |( R/ `4 Z/ q7 j
2.1.1 Maxwell’s Equations 197 c1 i& c! C: R2 x* ]* u. E. r* e5 ]- @
2.1.2 The Wave Equation in a Dielectric Medium 208 i. s7 H9 V1 T/ H5 f
2.1.3 Solutions of the Wave Equation 22
+ S) b: m& r: @; `9 z0 a. f9 E- ~( r7 X2.1.4 Phase Velocity and Group Velocity 25; {) E: C+ ?/ ?- ^; o  i  W) Z) u- {
2.1.5 Reflection and Refraction at Dielectric Interfaces 27+ D7 ^8 ]. K$ G  G7 W. Z0 e! @
2.2 Slab Waveguides 347 g. d- y- U3 P7 ^7 V
2.2.1 The Guided Wave Condition 34
, S3 j) A9 j1 h9 Z9 M2.2.2 Characteristic Equations for the Slab Waveguide 37
: C2 B/ o  ^/ a1 d7 P: J2.2.3 Waveguide Modes 39
& m' Q% G& J. }2.2.4 Orthogonality and Completeness of Modes 42  t% [  F0 G& q! d2 w3 |) p- p4 f- H
2.3.5 Dispersion 44  t& z: J$ ]# b8 z. M. P
2.2.6 Loss and Signal Attenuation 56
: A- ?, o* w: W6 S; Y) W/ t: ^2.3 Rectangular Waveguides 64
7 l( K( N; Z" F. i8 l! kvii
8 [, Y/ G/ o5 v1 n3 j% y4 z2.3.1 Wave Equation Analysis 654 A, v0 U3 e1 V
2.3.2 The Effective Index Method 67$ y: F; [/ e& ?& L% x- b' _7 l1 ]
2.3.3 Perturbation Corrections 68& `( e# @5 Y* p
2.4 Splitters and Combiners 698 o: e7 U3 H* }$ Q
2.4.1 Directional Couplers 69
) D) d0 G4 [- I" Y. Y7 G2.4.2 Star Couplers 76
7 R9 B9 k0 }2 F" |2.4.3 Multi-Mode Interference Couplers 78
6 Q( o9 P& v! m( S% c2 X9 B2.5 Material Properties and Fabrication Processes 823 ~7 T9 }0 \) N* y# I2 y
2.5.1 Materials 83: r2 J- Y/ I8 _0 _
2.5.2 Fabrication 86
, }% _$ d) J, k6 E, f$ ^4 xReferences 88/ ~8 m( o4 x; ], Z1 }
Problems 930 D7 g& R# r* O
3 Digital Filter Concepts for Optical Filters 95- Z" G0 s3 Y( n
3.1 Linear Time-Invariant Systems 95
! b( G- {: _4 @5 n+ p( m3 U3.1.1 Continuous Signals 96# ~% Y7 C8 j5 t0 [
3.1.2 Discrete Signals 102
0 P  F3 j+ o9 r9 t# ?( J, F3.2 Digital Filters 106
6 P8 ~$ p3 W) Z3.2.1 The Z-Transform 1067 a! [9 s7 v. v' R$ |9 j
3.2.2 Poles and Zeros 108
9 P0 x7 s0 ^0 j9 a* `) W6 C! S  T8 R3.2.3 Stability and Causality 110
. k  ]' S: k9 D6 U" I3 `4 Z3.2.4 Magnitude Response 112  e  b/ n9 ]' H5 D
3.2.5 Group Delay and Dispersion 114
: ]% N6 W$ c+ @+ Z$ T3.2.6 Minimum-, Maximum-, and Linear-Phase Filters 1196 d8 z$ c% T/ ^' A) Z
3.3 Single-Stage Optical Filters 126
, N. D$ c  {0 r2 Z1 s5 m8 k7 r3.3.1 A Single-Stage MA Filter 1291 N5 |5 S! k; m3 F6 w, |
3.3.2 A Single-Stage AR Filter 131
7 q2 R, Z; M+ e& O  `4 r1 J3.3.3 Power Conservation and Reciprocity 134: Y% n0 Y7 s+ S7 {6 b
3.3.4 Incoherent Optical Signal Processing 136$ c2 Q; }. F$ B" f3 T7 [
3.4 Digital Filter Design 1378 e7 v7 A9 M; e3 k" G) @# [
3.4.1 Approximating Functions 1377 i: }  _8 ^$ M" Q. b7 ]
3.4.2 Bandpass Filters 139- o9 b! m! A' U% b0 \. h
3.4.3 The Window Method for MA Bandpass Filters 1406 E( Z3 B+ o4 [% Q. Y# R2 b
3.4.4 Classical Filter Designs for ARMA Bandpass Filters 1429 h; H; ^- L" ^/ I3 W5 d
3.4.5 The Least Squares Method for AR Filter Design 1487 Y) L/ l. A# ~, V8 w' g8 }/ M- a% z
3.4.6 Multi-Stage Filter Architectures 154
& c4 b  O4 U1 _8 w8 z+ \( @Appendix 161
4 r5 v4 q  G# V0 P7 O; ~7 z$ KReferences 162
- L& z2 v( w( h1 M  nProblems 164# b1 K# }, ?+ z3 P; l7 Y
4 Multi-Stage MA Architectures 165
0 h* s# W: E$ _, E4.1 Single-Stage MZI Design 165
+ d. r) ]2 q5 S1 @2 S' l( B& a8 \4.1.1 Loss and Fabrication Induced Variations 1663 p( @7 R+ ^- U5 r
4.1.2 A Tunable Coupler 168
3 W7 y0 y/ Z' `" F7 K: V- u+ b7 G4.2 Cascade Filters 171
4 [. d6 n8 |5 l4 k  l4 b3 `viii CONTENTS
; C+ \& S! X7 S. E. g4.3 Transversal Filters 177
% t3 F% Y& z5 a1 G% T4.4. Multi-Port Filters 180
' |. Z. y# z/ M7 P7 \6 g) V4.4.1 Diffraction Grating Filters 180+ ]4 m4 k7 U; _. {  ~$ J, @
4.4.2 Waveguide Grating Routers 184
: C0 I6 U; a' Q9 A( m! ?* P4.5 Lattice Filters 198
2 B+ M9 ]# z7 Z6 q  Z& G4.5.1 The Z-Transform Description and Synthesis Algorithm 199
" W2 [- I1 ~# k* t$ x; U( w4.5.2 Generalized Lattice Filters 216
- Z3 {( d% Q- X( P! @4 K0 H1 W: a3 [4.6 Coupled-Mode Filters 224
" X" p$ O9 j9 o$ NReferences 232
0 p3 g( N: v/ G& FProblems 236
) ^0 o2 T4 _/ s5 Multi-Stage AR Architectures 237
: K7 z1 j& i% k/ l4 r# O5.1 Ring Cascade Filter 238
( T/ y- F7 u3 n- ~$ H9 r  l5.2 Ring Lattice Filter 241" ^4 E- V6 m, }7 @" H) Z- h3 ]' H
5.2.1 The Z-Transform Description 242
( H/ K8 [* K) Y3 i. }, `5.2.2 Synthesis Algorithm 246$ w' O/ K3 {1 l9 g- b
5.2.3 Sensitivity to Fabrication Variations 2582 V) X- \5 `4 F# ?* x, f
5.2.4 Bandpass Filter Design and Experimental Results 2635 O! _' y1 }; }6 ]& o
5.2.5 Gain Equalizer Design 267+ r- T( q" W2 f' \, C
5.2.6 Dispersion Compensator Design 270, \& A& o- q* X9 ]
5.3 Vernier Operation 272& Q( K9 F) u! ^8 O$ B6 p2 o
5.4 Reflective Lattice Filters 276
, K% p2 w: Z' k8 E! k8 \5.4.1 Thin-Film Filters 277! x! n/ J/ e! \/ S% f' y
5.4.2 Bragg Gratings 2854 B* m2 T; U7 U/ J7 \/ e
References 299
7 s8 z! }9 m. WProblems 302# V! u+ }% n% E7 u
6 Multi-Stage ARMA Filters 305
  t/ M  J/ ?6 M: h& L6 d6.1 A Maximally Flat ARMA Filter 305
) G3 o0 d0 r8 ]6.2 A General ARMA Lattice Architecture 3107 y. @7 A/ V' Z5 @# E  C
6.2.1 The Z-Transform Description 311
( d. ?1 K( `% q3 D- `6.2.2 Synthesis Algorithm 314
( X# v  s( y+ ^: l+ W+ Q# f6.2.3 Design Examples 317- Y  N8 k- C$ t3 j# f
6.3 All-Pass Filters 320
* E, T5 s" T, u: T; @5 b6.3.1 Optical All-Pass Filters 321
; x0 q6 W; }, ^4 u9 M( W0 t# l8 t6.3.2 Fiber Dispersion Compensation 3230 B& p( n. u6 n! G! }0 t
6.3.3 Filter Dispersion Compensation 325  T, e) n( p+ c! Z/ R) b
6.3.4 Wavelength Dependent Delays 3284 F# P, U9 i, @
6.4 Bandpass Filters 330
3 {3 r/ Z; }: v2 k, ]  _6.4.1 All-Pass Decomposition for 2 × 2 Filters 333/ N; O. u! _  ]  G5 t0 b
6.4.2 An N × N Router 345
1 b+ d" p7 P. {' JReferences 352$ }) R2 S7 p6 h( L  d  S4 k
Problems 353
3 p7 D  b9 U$ Z0 M5 FCONTENTS ix
2 _" o0 i. A) p- v6 t$ s7 Optical Measurements and Filter Analysis 355
5 j8 m. e: n( ?  @4 D7.1 Optical Measurements 355
: h3 N7 v) E5 ?4 x( [- ^, ~2 w# M7.1.2 Polarization Dependent Loss 360, u* v' D* a$ C2 M0 ^8 S
7.1.3 Indirect Loss Measurements 365
  ~* [2 e6 y0 t% x4 b% o0 K7.1.4 Group Delay 372) g$ G! V7 I8 H  {* D( ?
7.2 Filter Analysis 3787 Z' J' S) u1 C. ]8 Q. ^
7.2.1 Time Domain Measurement 378
; N4 e/ `( l- [' J7.2.2 Optical Low-Coherence Interferometry and Fourier Spectroscopy 380
6 l2 Z6 k- }2 X2 _2 D7.2.3 The AR Analysis Algorithm 387
6 A& A9 {+ v' G  b# qReferences 3935 _6 S: d, A% ^8 O% s0 C
Problems 3944 a0 H+ K. R3 _  Y  C6 ]+ }
8 Future Directions 397
8 m$ ?% O4 G1 ~8.1 Communication System Applications 397$ u- D. d: r- L5 J( N5 |% `  @0 D
8.1.1 Ultra-Dense WDM Systems and Networks 397
: }( O1 [2 s8 ]) S" O0 x, N8.1.2 Ultra-Fast TDM and Optical Codes 3986 G$ r/ W% v( G& `
8.2 Materials and Processing 400
. X3 O) X4 T, H( [4 j: O' f4 ~8.3 Summary 4026 b, }3 b( y1 p( r1 b: L6 u' E
References 402; Z$ l0 L5 @+ v* T' Q+ \
Index 405# e3 l* F+ t: e* x6 x
x CONTENTS
( o. }2 ]0 ~( FPreface
0 x7 @" {2 R6 o  n. P9 yOptical filters whose frequency characteristics can be tailored to a desired response9 v% A- \& o  E4 b4 O, K& ~/ l0 c
are an enabling technology for exploiting the full bandwidth potential of optical5 o& l* {. F2 z/ ]: s! o
fiber communication systems. Optical filter design is typically approached with0 t; P# P! d  T% f0 [' U
electromagnetic models where the fields are solved in the frequency or time domain.! R- o0 `7 b' f9 [3 X
These techniques are required for characterizing waveguide properties and individual+ p. ~# E1 d0 M9 r, V& A8 z
devices such as directional couplers; however, they can become cumbersome
- f- o7 E% @4 K% o( Oand non-intuitive for filter design. A higher level approach that focuses on the# i, X' f: j" w" i/ I: s# ]8 F
filter characteristics providing insight, fast calculation of the filter response, and
" z  |0 r( F& q! Leasy scaling for larger and more complex filters is addressed in this book. The important$ w$ |+ w& j# |4 c
filter characteristics are the same as those for electrical and digital filters.
& r$ S# Y9 w- FFor example, passband width, stopband rejection, and the transition width between4 h3 D# x! a) D7 ~5 T; V
the passband and stopband are all design parameters for bandpass filters. For high$ ?: k$ L( r- K8 ^) \5 P
bitrate optical communication systems, a filter’s dispersion characteristics must also
) s; q+ s& l- H7 f# r0 @be understood and controlled. Given the large body of knowledge about analog and3 o' E/ s) r" \  W) l0 j
digital filter design, it is advantageous to analyze optical filters in a similar manner.
5 D+ i1 [0 }& F1 tIn particular, this book is unique in presenting digital signal processing techniques/ m' q  X6 L3 [# l3 w- }" O( r
for the design of optical filters, providing both background material and theoretical8 P& M! ?2 Q7 a/ Q, {
and experimental research results.
+ P0 _  m  |0 Y6 oThe optical filters described are fundamentally generalized interferometers
( |, O) f5 _) v: ~: I" L2 Gwhich split the incoming signal into many paths, in an essentially wavelength independent
# a9 r9 |8 ]* ~0 G# d8 i. Omanner, delayed and recombined. The splitting and recombining ratios, as. T+ ]2 \# x. N1 q" V  L
well as the delays, are varied to change the frequency response. With digital filters," f3 J# D! @% {+ ]! ^, \; t
the splitting and recombining are done without concern for loss or the required3 [# S+ c; F+ }7 M8 g- V# \, m/ t
gain; whereas, filter loss is a major design consideration for optical filters. The delays
& y9 P/ H$ q0 v/ uare typically integer multiples of a smallest common delay. A well-known4 u( V1 l: T% d% Y/ C  ]; r
example is a stack of thin-film dielectric materials where each layer is a quarterxi
6 p. F) R* ?" S4 ^. i0 B; swavelength thick. In this case, the splitters and combiners are the partial reflectances  M* R0 _6 T6 Z' r; _
at each interface. Just as capacitors, inductors, and resistors have underlying
" P% ?( C! W; Y$ E( N8 selectromagnetic models but are treated as lumped elements in analog filter designs,
2 H, }1 ^. Y5 u; ^5 Qeach splitting and combining element is modeled from basic electromagnetic. Y: l5 x/ |3 T/ V7 D0 R* y+ \
theory and then treated as a lumped element in the optical filter design.
4 r" S8 ]9 n  B  n+ Q% @Another similarity with analog filters, but a major difference from digital filters,: t+ y* \7 i' c
is the level of precision and accuracy that can be achieved in the design parameters: O6 y1 y- n, C
for optical filters. For example, analog electrical components and optical components$ Z: y! F2 e2 Z! V+ O; A
cannot be specified to the tenth decimal place; whereas, such numerical precision
! K& i! B9 H) v' x: v1 iis commonplace for digital filters. Thus, a filter’s sensitivity to variations in the
: i" R/ |+ v; ndesign parameters must be considered. In addition, measurement and analysis techniques
2 G3 P. S4 w. d, l9 I/ Care needed to identify where variations have occurred in the fabrication; y# g) m, f8 ?8 s+ C
process and what parameters are causing a filter to deviate from its nominal design.
- E: D  c) }5 y' S  _These issues, which are characteristic of optical filters, are addressed in detail.
, r, j$ }- V1 c  YThis book is intended for researchers and students who are interested in optical
5 I5 Y! Q; Q% Z. r' K# f1 G, Ufilters and optical communication systems. Problem sets are given for use in a graduate
, _) \7 I! z+ H$ Clevel course. The main focus is to present the theoretical background for various" l2 x" T3 g6 G/ n3 s& T
architectures that can approximate any filter function. Planar waveguide devices: b% ~6 L, \1 I2 W" j" E( b3 b
realized in silica are used as examples; however, the theory and underlying design0 p! A5 q6 ?7 U1 T; D; C; y' H' H$ {
considerations are applicable to optical filters realized in other platforms such as
3 o8 k5 N# W/ e3 [fiber, thin-film stacks, and microelectro-mechanical (MEMs) systems. We are at an6 G/ s4 p2 C  d; f0 N
early point in the evolution of optical filters needed for full capacity optical communication, j9 x9 t+ q, L- }
systems and networks. Many filters need experimental investigation, so  W9 m/ ^  F) |" w( T
this book should be valuable to people interested in furthering their theoretical understanding$ c$ P: ?4 O+ w
as well as those who are fabricating filters using a wide range of material! S4 C5 \+ n/ r5 w! W
systems and fabrication techniques.
8 x% p" _  G5 W2 m! UA detailed introduction to electromagnetic and signal processing theory is given
% K8 f: q0 M. ^$ U' Uin Chapter 1. In Chapter 2 on electromagnetic theory, a complete discussion is provided
% M3 w7 n8 O- L4 Ron waveguide modes, coupled-mode theory, and dispersion. In Chapter 3 on
* C" ^5 p/ K/ A& J# ~signal processing theory, Fourier transforms, Z transforms, and digital filter design  |' y  U) D3 [( m  d, m* {0 l
techniques are discussed. The next three chapters (Chapters 4–6) cover optical filters7 [( h- C, ^) k+ Z0 }' ]  L
and include design examples that are relevant to wavelength division multiplexed
3 I5 C/ F* s9 A' ~% ~) ?(WDM) optical communication systems. The examples include bandpass filters,
- ^* p4 S0 w# l# E8 W; Qgain equalization filters for compensating the wavelength dependent gain of
1 e$ ?2 u6 B, _( C; ]" K+ Poptical amplifiers, and dispersion compensation filters. A particularly important filter
1 D2 P+ c& R8 w& C/ Dfor WDM systems is the waveguide grating router (WGR), which is fundamentally
4 @4 e( `1 q' gan integrated diffraction grating, because it filters many channels simultaneously.0 x! t  n" g$ n$ m
Its operation is examined using Fourier transforms to provide insight into its
0 D0 q) K3 \% V* b. Speriodic frequency and spatial behavior. Filters using thin-film dielectric stacks,7 S$ x' H8 n. Q; ]$ V/ O' g
Bragg gratings, acousto-optic coupling, and long period gratings are also examined.
  v* ]2 J; E) Z% F# Q% eFilters with a large number of periods such as Bragg and long period gratings are3 P2 j+ r. h! P7 E( M; L9 A2 x
typically analyzed using coupled-mode theory. We include the coupled-mode solutions# C  O9 ~& Z6 [
for these filters, thus offering the reader a comparison between signal processing  }4 B# X& L. L9 n
techniques and the coupled-mode approach. Measurement techniques and filter# [9 Y7 h/ z7 p, ?9 Y( ^
xii PREFACE7 S% P, I3 G" m: w7 c
analysis algorithms, which extract the filter’s component values from its spectral or
: p5 s  K2 a0 w5 O# U; A3 I: O$ w5 Ctime domain response, are addressed in Chapter 7. Finally, areas that are expected to
( ?+ X9 `9 y! J0 `/ c3 Rhave a dramatic effect on the evolution of optical filters are highlighted.
% m9 N  W4 N% L( A5 [The authors gratefully acknowledge the review and suggestions provided by G.8 x* L  D- Q3 m7 y! |* [
Lenz, Y. P. Li, W. Lin, D. Muelhner, and A. E. White of Bell Laboratories Lucent" P/ W$ g! y: `' T4 H; ~
Technologies, S. Orfanidis of Rutgers University, B. Nyman of JDS Fitel, and T. Erdogan
5 w% W8 X$ q+ dof the University of Rochester.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

本站邀请注册说明!

小黑屋|手机版|Archiver|光学薄膜信息网  

GMT+8, 2024-6-2 04:49 , Processed in 0.026546 second(s), 18 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表