定制高端激光薄膜

光学薄膜论坛

 找回密码
 注册
搜索
本站邀请注册说明!
查看: 613|回复: 0

[转贴] 高能量激光器:镀膜为何首选溶胶

[复制链接]
发表于 2017-8-7 21:38:32 | 显示全部楼层 |阅读模式
高能量激光器:镀膜为何首选溶胶
5 \/ J& ~5 P, ?& _5 f
* C8 t( d  K/ Z+ Y; V' C- x6 b
光学薄膜是所有光学器件不可或缺的功能材料,没有高质量的光学薄膜,光学仪器甚至无法使用。由于溶胶-凝胶膜具有耐激光损伤阈值高的突出优点,经过二十多年的发展,溶胶-凝胶化学法成为了高能量激光器光学系统的首选镀膜方法。
  ]5 e1 y; X* R: \) l
( h$ H8 d6 X' L9 L* Y传统物理法与溶胶凝胶化学法! u' X3 t) R# V' m

* n1 y! H- H- q- s1 c/ [  @7 B7 E8 w% g传统的光学薄膜制备方法是以物理气相沉积(PVD)为核心的一系列物理方法,已有一百多年的发展历史,其理论、设备、软件均已非常成熟,市场占有率大。物理法镀膜精度高,适合小口径平面元件多层镀膜,设备投资大,维护费用高,是重资产项目。
, x; m/ {4 E# P9 z
  |" M, n; ?; Z/ Q* q- c目前,物理法光学薄膜基本是一个封闭的技术领域,从科学的角度,学术外延不广。而化学法光学薄膜得益于纳米材料和新能源技术的迅猛发展,正面临源源不断的新需求和新挑战,潜力巨大,是一个值得大力投入的方向。
1 F+ S3 A8 T3 o' Q- X# ~9 V8 T7 e' g+ `1 h! F9 a
化学法分为化学气相沉积和液相外延两种。理论上,化学气相沉积法可以做到的薄膜,液相外延法均可以做到。液相外延法主要指溶胶凝胶法(Sol-Gel):将光学基片以某种方式与预配好的镀膜液(胶体或溶液)接触并渐次通过液体区,利用溶剂挥发速度和液体流动速度的匹配,在基片表面形成一层不能够流动的沉积层。
# Q; _: x  E4 ^2 A# D: q- z! Y9 }6 \* ?* h/ k" a2 z( v
溶胶凝胶法镀膜精度不如物理法,但适合大口径平面或异形元件镀膜,设备投资少,维护费用低,是轻资产人才密集型项目。溶胶凝胶法与物理法二者互为补充,各有优缺点,一旦结合,可能创新出性能优越、单一方法难以制备的薄膜材料。
' ~2 I: R, G) R6 ~7 H$ _
* I. t3 H0 w# ~! }; Q溶胶凝胶化学法成为首选, F' I, l. q% k4 E! d/ v& ]+ }; O/ x
" ?2 Q* V7 W# D& B+ B/ G- `
溶胶凝胶化学是古老的胶体化学的一个现代分支。自从几十年前有机硅醇盐的诞生以来,以二氧化硅颗粒的硅醇盐路线合成为起始和代表的溶胶-凝胶化学把古老的胶体化学推动到了崭新的发展阶段,溶胶-凝胶化学就此展开其众多的研究分支和丰富多彩的应用领域。
; T, l2 @/ B1 I5 g& n
& B8 A* J* g; y% r6 _溶胶本身包含“由溶液到胶体”的意思,即从单相的溶液体系通过一定的化学反应逐渐生成胶体粒子,从而形成胶体分散体系,如果化学反应持续进行,胶体粒子就会不断长大直至溶胶失去流动性形成凝胶,或者,通过外加干涉的办法强行凝胶化,这就是制备光学薄膜所采用的路线。
) J2 N0 K8 b! j$ f! J9 e; c7 K0 J- i$ q% U6 ~
虽然溶胶-凝胶化学是一个应用性很强的研究领域,但鉴于其化学基础研究涉及溶液中的化学反应动力学、胶体成核理论、胶体粒子生长理论以及多相体系的化学反应,是一个相当复杂的过程,同时由于胶体粒子尺寸处于纳米尺度,在微观结构表征方面也存在相当的难度,所以研究溶胶-凝胶化学基础又是极有挑战性的工作。
0 U' Q2 Z1 B7 [* ?5 D7 }# [4 k' T6 j* Y& e" G& M: j6 d
溶胶-凝胶法用于镀制光学薄膜最早出现在上世纪六十年代末,Stber等人利用TEOS在乙醇溶剂中在氨水催化下的水解和缩聚制备了球型单分散的SiO2颗粒,并由此制备了第一个减反射膜。之后不久,1969年,Schroeder就单层和多层溶胶-凝胶薄膜发展了一套薄膜物理。在1994年的《Laser Focus World》第九期,Thomas V. Higgins发表了一篇关于光学薄膜及薄膜光学的简单回顾。从Fresnel提出著名的物理光学Fresnel方程,到Maxwell提出电磁理论,Lorentz提出电磁辐射的偶极模型,直至William T. Doyle把Fresnel方程用电磁场理论重新表达,薄膜光学形成了统一的理论体系。但此时,溶胶凝胶法在光学薄膜领域并未占有多少分量。
* ^7 b. `5 h( w1 X- |& P" S
0 Z. q, O* f% }4 i- A& j5 M* q随着高能量激光器的出现,同时对高功率超短脉冲激光的追求,相关激光物理现象的研究也需要更高能量的激光,而高能量激光具有极大的破坏力,因此对光学元件耐激光损伤能力的提高就非常迫切。物理法制备薄膜最大的缺点就是抗激光损伤能力差,这极大地限制了其在高能量激光器光学元件上的应用,此时溶胶-凝胶法镀膜作为一种可能的替代技术获得了较大发展。溶胶-凝胶法成为高能量激光器光学系统的首选镀膜方法。' \# v' B; q9 K4 T& a. Q' W/ o
9 C" t) [" b! a$ W
溶胶凝胶法镀膜工艺
4 [- R* ]& J9 [+ c  D1 I5 W0 f& y& x* ^! Y6 @* a7 g  E
作为液相外延法,溶胶凝胶镀膜可以使用多种镀膜工艺,包括提拉法(dip-coating)、旋涂法(spin-coating)、喷涂法(spray-coating)、弯月面法(meniscus-coating)等方法。无论采取哪种镀制技术,薄膜的成膜机理是一致的,在制备过程中要严格控制沉积参数和环境条件。. q4 i, |( d9 x8 ]
由左至右依次为:喷涂法、弯月面法、旋涂法、提拉法示意图  ^' P6 |* h: r% ^, b+ m

- n: {( s  w, m, G- H1 k  Z. i具体镀制方法的选择主要取决于基底尺寸及其几何形状、镀膜要求(单面或双面)、镀膜成本以及前驱溶胶的寿命等:7 c" N7 o8 q5 w; {

+ o1 N) g, i! @1 U9 }+ |3 Y
- Q0 B/ G( N( H弯月面法需要的溶胶量较少,适合中等尺寸平面基片上沉积单面多层薄膜或者双面异质薄膜,没有重力对流体的影响,镀膜均匀性非常好。
% u8 ~5 s0 x  ]( I' _0 V3 S! {* k6 O* W
旋涂法通过改变转速来控制膜厚,需要的溶胶量最少,但只能获得单面薄膜,适用于小尺寸元件镀膜。" T5 I- v/ `9 i: l4 J% t# N
8 A+ v. Q. n! }1 d, E' F7 G
提拉法溶胶用量较大,对于形状不规则或大面积基片双面镀膜具有较强的适应性,通过改变提拉速度可以调节薄膜的厚度。
1 h) f$ X9 o) Y% n! q7 f从最早的硅醇盐或金属醇盐水解的溶胶凝胶法开始,逐渐衍生出很多相关的湿化学方法,都可以用来制备光学薄膜,以适用于不同的要求。比如,非水体系溶胶凝胶法、水热或溶剂热法、溶胶-溶剂热法、沉淀-重分散法等等。应用这些方法可以制作品种繁多的光学薄膜,比如,非线性光学晶体保护膜,用于固体激光器的三波长减反膜,疏水疏油减反膜,用于无色差镜头的MgF2纳米晶减反膜,用于光伏、光热太阳能器件、平板显示等的宽谱带减反射膜,用于柔性显示屏的有机无机杂化减反膜,VO2隔热膜,高反膜等等。
+ {. h" _! C6 W# v! A; f8 S& X2 |& T4 ^! F  |" `' T, d& Y6 ?/ X& h0 _7 R
作为一种只有五十年历史的薄膜制备方法,以溶胶凝胶法为核心的液相外延法已经在各行各业得到应用,在光学薄膜领域的应用也会越来越受到重视。可以展望,未来的柔性显示技术、分布式光热电站、手机显示屏等很多设计光学性能要求的工业产品都需要化学法镀膜。+ {/ T: h/ ]7 M" ^; p& \

6 l- d  t" z" [* g. t  ?Tips:8 z; z/ q( \. E; d2 x$ n
据“中国激光”了解:
! h, c/ X* z( u7 i4 L0 R  _1、我国现在专业从事溶胶凝胶光学薄膜研发的项目组中,中科院西安光机所的徐耀研究员有丰富积累,无论应用科学研究,还是技术应用开发,均有深入研究,目前该研究团队正在加快向工业技术迈进,加快推进成果转化是他们的目标。
; ?. @9 g. h: ~# j) r( \" |2、中科院上海光机所研制的“神光Ⅱ”大型高功率激光装置就是采用了溶胶凝胶化学法的涂膜方案。相关阅读:“神光的化学膜从没掉过链子”。
4 d7 z1 r0 v1 [# [2 k; g
您需要登录后才可以回帖 登录 | 注册

本版积分规则

本站邀请注册说明!

小黑屋|手机版|Archiver|光学薄膜信息网  

GMT+8, 2024-6-1 21:42 , Processed in 0.039674 second(s), 18 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表