|
|
发表于 2011-7-8 13:16:51
|
显示全部楼层
本帖最后由 gds 于 2011-7-8 21:19 编辑 0 D0 u" r/ M* H$ @5 k
; S+ g* _! \/ Y. ] e给你个官方的例子:
, h* B- I$ u; ^
. q2 Z5 {- a- L/ c6 Q- [5 w: n% J; Q7 v* P+ y A7 i
Broadband AR for a Cone of Light ; \; ~. r. k- X. U. B6 Z
Here we consider a coating on glass that reflects only 0.5% of a cone of light for a range of wavelengths from 420 to 680 nm. The cone axis is normal to the glass. The cone has an F-number of 0.778, which means the half-angle is 40 degrees. An uncoated glass surface reflects 4.4% of this cone of light. We use a feature new to version 3.5: cone-angle targets. As optimization targets we use # c% v% C- h8 `9 P0 B
R < 0.5% for wavelengths 420, 425, 430,..., 680 and for a 40-degree cone , l) {6 Z) W5 N# T( i$ g; v
5 l* l7 L# C k" ^5 j# j3 {# _In TFCalc, these targets are easy to enter by using the "Generate Cone Targets" command on the Options menu of the "Targets - Cone Angle" window. We use TFCalc's needle/tunneling optimization to design the coating from "scratch". That is, we begin the design process with a single thin layer of TiO2 and allow TFCalc to increase the thickness and number of layers in the design. TFCalc finds a 6-layer design in a few minutes. The performance of this design is shown below. The little circles indicate the optimization targets.
3 B" b9 y! x& g
1 z5 {% ~; y, s4 O! a! y; \) `* t$ k' y9 p8 l) ~
Here is the design, starting with the layer closest to glass, and with thicknesses given in nm: : u; Z B1 ^+ w# E2 b% c( v: C) e* l
TIO2 11.04
! M( ?& V. A( @) W7 ~5 a/ B1 S. qSIO2 44.43
{- i& _6 p& y; w7 E p3 |7 a x7 TTIO2 34.999 y( c9 a/ A. p- L2 O0 I
SIO2 28.25' O% ^& y1 A9 u' s* z& z' x# J
TIO2 30.46% d" @# U6 ^5 A5 M, s
SIO2 104.92
$ I) X4 G# h: ^' Q# H; }" l Z( U( w. A' Y; c9 ?3 ^5 K
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册
×
|